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Abstract

Multi-armed bandit problems have potentials to identify the best intervention in1

a sequence of repeated experiments. Initially, the minimax optimal performance2

is well-understood without the framework of counterfacturals. However, recent3

research demonstrated that causal bandit algorithms incorporating observed vari-4

ables that d-separate the intervention from the outcome of interests can result in5

lower regret. In practice, it is desirable to have an algorithm that is agnostic to6

whether observed variables act as d-separators. This means that the algorithm7

should adapt and perform nearly as well as an algorithm that has oracle knowledge8

of the presence or absence of a d-separator. Importantly, the algorithm does not9

require any oracle knowledge of causal mechanism. To formalize and explore the10

notion of adaptivity, we introduce a recent algorithm (HAC-UCB) from Bilodeau11

et al. (2022) that (a) achieves optimal regret when a d-separator is observed; (b)12

incurs significantly smaller regret compared to recent causal bandit algorithms13

when the observed variables are not d-separators. The concept of adaptivity is14

further extended to other conditions, but unfortunately it fails to completely exploit15

the tools developed by recent research in causal inference. Therefore, we will16

discuss some improvement of adaptability for bandit problems.17

1 Introduction18

The task of learning the best intervention from observational data, without knowledge of the specific19

causal structure, is impossible according to Theorem 4.3.2 of Pearl (2009). Instead, the focus20

shifts to finding an efficient method for sequentially selecting interventions in i.i.d. repetitions of21

the environment. The main challenge lies in the inability to observe the counterfactual effects of22

interventions not chosen. Without any structural assumptions beyond i.i.d., one can learn the best23

intervention with high confidence by performing each intervention a sufficient number of times.24

However, performing each intervention a sufficient number of times is not an efficient way and most25

of time infeasible in practice.26

The (multi-armed) bandit framework provides a natural context to address this problem. In this27

setting, the experimenter chooses actions over a sequence of interactions, based on past experiences,28

and observes the corresponding rewards. The goal is to achieve performance comparable to what29

would have been attained if the experimenter had always chosen the optimal action. Performance is30

measured by regret, the difference between the cumulative reward obtained by the experimenter and31

that of the optimal action. Regret captures the exploration-exploitation trade-off, where exploration32

involves choosing potentially suboptimal actions to learn their optimality, while exploitation entails33

selecting the action that appears to be the best based on empirical evidence. Other measures of34

performance, such as identifying the average treatment effect or the best action at the end of all35

interactions, fail to penalize suboptimal actions during exploration and are insufficient for studying36

the desired question.37
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For an action set A and a time horizon T , the minimax optimal regret for bandit problems without38

any data assumptions (worst-case scenario) is O(
√
|A|T ), and several algorithms achieve this bound.39

Recently, demonstrated that under additional causal structure, a new algorithm called C-UCB from40

Lu et al. (2020) can attain improved regret. Specifically, if the experimenter has access to a variable41

Z ∈ Z that d-separates (Pearl (2009)) the intervention and the reward, as well as the interventional42

distribution of Z for each action in A, C-UCB achieves regret O(
√
|Z|T ). We will introduce43

d-separation formally later. For now, we can understand it as a desirable causal mechanism in the44

environment. However, as shown, when the d-separation assumption fails, the performance of C-UCB45

is significantly worse than that of UCB. This raises the question of strict adaptation. We seek that46

there exists an algorithm that combines the guarantee of C-UCB when Z is a d-separator and the47

guarantee of UCB in all other scenarios, without prior knowledge of whether Z is a d-separator.48

Currently, Bilodeau et al. (2022) proposed hypothesis-tested adaptive causal UCB (HAC-UCB)49

that partially achieves this goal. HAC-UCB perforems hypothesis testing on each trial to decide50

whether the experimenter should swich form C-UCB to UCB. Another closest approach is the Corral51

algorithms, which employ online mirror descent to merge "base" bandit algorithms. However, Corral52

requires the stability of each base algorithm when operating on importance-weighted observations,53

which is not the case for C-UCB, as evidenced by simulations. This poses a challenge for adapting54

to causal structure using Corral-like techniques and prompts the exploration of novel methods to55

achieve adaptivity. Still, both of them do not completely exploit the tools developed by recent56

research in causal inference. The most critical reason that causal assumption-based approaches57

fail is the presence of unmeasured confounding. If there presents the unmeasured confounding in58

the environment, Z cannot be a d-separator. However, not all unmeasured confounding cannot be59

remedied. Recent research in causal inference has developed several tools to address the issue of60

presence of unmeasured confounding. Therefore, there is a space to improve the adaptivity for bandit61

problem.62

Contributions. We review the essential concept of adaptive causal bandit algorithm: the conditionally63

benign property for environments. We introduce several causal/non-causal algorithms attempting to64

adapt the optimal minmax regret rate without the knowledge of the presence or absence of d-separator.65

We reproduce two regrets figures from Bilodeau et al. (2022), the conditionally benign environments66

and worst-case environment. Our numerical experiments confirm that HAC-UCB is surely state-of-art67

of the adaptive causal bandit algorithm nowadays. However, we provide some possible improvement68

of adaptability for HAC-UCB in the discussion. Such improvement makes algorithms adapt to the69

environment in certain case even when the conditionally benign property fails.70

2 Preliminaries71

2.1 d-separation and Conditionally Benign Property72

For clarity, we introduce the concept of d-separation from Pearl (2009). We can express the causal73

mechanism among varialbes of interests in terms of a directed acyclic graph (DAG) by d-separation.74

Definition 1. Let A, Z, and Y be variables of interests, where Z ∈ Z .75

(1) A and Y are d-connected if there is an unblocked path between theme.76

(2) A and Y are d-connected, conditioned on a set Z of nodes, if there is a collider-free path between77

A and Y that traverses no member of Z . If no such path exists, we say that A and Y are d-separated78

by Z .79

(3) If a collider is a member of the conditioning set Z , or has a descendant in Z , then it no longer80

blocks any path that traces this collider.81

For example, in the case of A→ Y , A and Y are d-connected according to case (1). For the case (2),82

consider A → Z → Y . A and Y are d-separated by Z since when conditioning on Z, there is no83

path between A and Y . Finally, consider a similar DAG A→ Z ← Y . In this case A and Y are now84

d-connected by Z since Z is a collider. When conditioning on Z, there is new path open from A to85

Y through Z.86

With the concept of d-separation, we are ready to state the conditional benign property.87
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Definition 2. An environment is conditionally benign if there exists a random variable Z such that88

the conditional distribution of the reward given Z is unchanged for each action a ∈ A.89

This definition does not require any causal terminology to define or use for regret bounds, but it is90

actually closely related to the causal setting. Shown by Bilodeau et al. (2022), for an environment91

equipped with action, post-action variables and outcome of interest (A, Z , Y ), the conditional92

benign property is equivalently to say that there exists a Z ∈ Z being a d-separator when A is all93

interventions.94

Conditionally benign property plays an essential role for causal-type algorithms to work. The most95

important example and counterexample of conditionally benign environment are A→ Z → Y and96

A→ Z → Y ← A, respectively. It is clear that the conditional benign property holds in the first case97

since Z is a d-separator. For the second case, Z fails to d-separate A and Y since conditioning on Z,98

there is still a path between A and Y . Therefore, the conditional benign property fails. Furthermore,99

conditionally benign property is a slightly weaker assumption than d-separator environments as it100

allows the presence of null intervention.101

2.2 Causal Bandit Problem102

We explore a generalized extension of the traditional bandit setting from Lattimore et al. (2016),103

called causal bandit problems. In addition to observing the reward associated with the chosen action,104

the experimenter also has access to additional variables after making their action selection. We105

refer to this as the post-action context. It is important to note that this differs from the contextual106

bandit problem, where the experimenter has access to side-information or contextual variables before107

making their action choice.108

Let Yt be the outcome of interest, At be the action or intervention, and Zt be the post-action109

context variable. For each round t = 1, . . . , T , the experimenter selects At ∈ A from a policy π110

and simultaneously the environment samples {(Zt(a), Yt(a)) : a ∈ A}, where Zt(a) and Yt(a) are111

counterfactuals of Zt and Yt when action At = a. The experimenter only observes (Zt (At) , Yt (At))112

and receives reward Yt (At). The performance of a policy is quantified by the regret R(T ) =113

T ·maxa∈A E[Y (a)]−Eπ

∑T
t=1 E[Y (At)]. Conceptually, The experimenter seeks the most effective114

intervention A ∈ A for A → Y to minimize the regret R(T ) with the presence of post-action115

variables Z116

It is worth to note that, in general, E[Y (a)] ̸= E[Y |A = a] but E[Y (a)] = E[E[Y |pa(Y ), A = a]],117

where pa(Y ) is the set of parents of Y in DAG. Therefore, when there exists unmeasured confounding118

in the environment i.e., Z ̸= pa(Y ), statistics related to causal quantities based on observed trials are119

no longer consistent, and thus leads to a significant bias.120

2.3 Algorithms121

We now introduce additional notation to define the three main algorithms of interest in this122

work: UCB, C-UCB, and HAC-UCB. Let δ ∈ (0, 1) be the confidence parameter. First, let123

TA
t (a) = 1 ∨

∑t
s=1 I(As = a), µ̂A

t (a) = TA
t (a)

−1
∑t

s=1 Ys(As)I(As = a), UCBA
t (a) =124

µ̂A
t (a) +

√
log(2/δ)/(2TA

t (a)). We define the policy of UCB, by At+1 = argmaxa∈A UCBA
t (a).125

It is well-known that without any assumption of environment, the regret of UCB is R(T ) ≤126

2|A|+ 4
√
2|A|T log T .127

Next, let TZ
t (z) = 1 ∨

∑t
s=1 I(Zs(As) = z), µ̂Z

t (z) = TZ
t (z)

−1
∑t

s=1 Ys(As)I(Zs(As) = z),128

UCBZ
t (z) = µ̂Z

t (z) +
√

log(2/δ)/(2TZ
t (z)), ŨCBt(a) =

∑
z∈Z UCBZ

t (z)Pν̃a
(Z = z), and ν̃a is129

an estimate of the interventional marginal distribution νa of Z when A = a. We define the policy of130

C-UCB by At+1 = argmaxa∈A ŨCBt(a). Bilodeau et al. (2022) showed that the regret of C-UCB131

R(T ) is lower when ν̃a is close to νa and conditionally benign property holds; however, R(T ) is132

linear in T , when conditionally benign property fails even if ν̃a = νa.133

Finally, we state the idea of HAC-UCB and describe it precisely in the pseudocode from Bilodeau134

et al. (2022) in Figure 1. Heuristically, the HAC-UCB algorithm initially goes through an exploration135

phase to ensure that the estimate ν̃a is sufficiently accurate. If it is not, the maximum likelihood136

estimate (MLE) of the marginals is used as a replacement. After this exploration phase, HAC-137
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Figure 1: Pseudo code of HAC-UCB

UCB optimistically plays the C-UCB algorithm until there is enough evidence indicating that the138

environment is not conditionally benign.139

The switch from C-UCB to UCB is determined by a hypothesis test conducted at each round. This140

test utilizes confidence intervals that would hold if the environment were conditionally benign. When141

there is a disagreement between the arm mean estimates of UCB and C-UCB, it provides evidence142

that the environment is not conditionally benign. The decision to switch is made when the size of the143

disagreement is sufficiently large compared to the size of the confidence intervals themselves.144

It is shown that with high probability, this hypothesis test will not trigger a switch in a conditionally145

benign environment. Furthermore, if the environment is not conditionally benign, the test sufficiently146

limits the regret incurred by C-UCB. Overall, this heuristic approach aims to ensure accurate147

estimation during the exploration phase, followed by an adaptive switch between C-UCB and UCB148

based on evidence of the environment’s conditionally benign nature or lack thereof. By doing so, the149

regrest of HAC-UCB R(T ) always achieves sublinear; as good as C-UCB when ν̃a is close to νa and150

conditionally benign property holds.151

3 Implementation152

In this section, we reproduce the two regret plots for comparison in Bilodeau et al. (2022). Each153

plots take about 3 minutes to generate. We compare the empirical performance of several algorithms154

in two key settings: conditionally benign environment A → Z → Y and worst-case environment155

A→ Z → Y ← A. We evaluate HAC-UCB, against UCB, C-UCB, C-UCB-2, and Corral. For all156

algorithms, we use the optimal parameters as prescribed by existing theory. To isolate the impact157

of the conditionally benign property, we set the ν̃a(Z) = νa(Z). The results of this section present158

representative simulations, demonstrating the following empirical findings: (a) In conditionally159

benign environments, both HAC-UCB and C-UCB exhibit improved performance compared to UCB,160

Corral, and C-UCB-2. The latter three algorithms all experience regret growth proportional to |A|T ,161

whereas HAC-UCB and C-UCB achieve better performance.(b) In worst-case environments, both162

C-UCB and C-UCB-2 experience linear regret, while HAC-UCB successfully transitions to incur163

sublinear regret, enabling it to compete with Corral and UCB.164

The Python codes for the algorithms and the experiment are submitted in Canvas.165
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3.1 Conditionally Benign Environment166

We consider the case, A→ Z → Y . Let ∆ =
√
|A|(log T )/T be the fixed effect. Let Z = {0, 1}167

and Y | Z ∼ Ber(1/2 + (1 − Z)∆). Let Pν1 [Z = 0] = 1 − ε; Pνa [Z = 0] = ε for all other168

a ∈ A\{1}, where ε is selected to a extremely small number. In this case, we can calculate the169

outcome under the optimal action. That is, maxa∈A E[Y (a)] = E[E[Y |Z,A = 1]] = 1/2+(1−ε)∆.170

We repeat the entire experiments over 300 epochs and visualize it in Figure 2. We find that C-UCB171

and HAC-UCB perform similarly, both achieving much smaller regret. In the meanwhile, UCB grows172

at the worst-case rate.173
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Figure 2: Regret when the conditionally benign property holds

3.2 Worst Case Environment174

We consider the case, A → Z → Y ← X ← A. Let X = I(a > 10) be the unmeasured175

confounder. Let Z = {0, 1} and Y |X,Z ∼ Ber(p), where p = 0.5/6 if (X,Z) = (0, 0); p = 5/6 if176

(X,Z) = (1, 0); p = 5.5/6 if (X,Z) = (0, 1); p = 1/6 if (X,Z) = (1, 1). Let Pνa
[Z = 0] = 6/8177

for a = 1, . . . , 10; Pνa
[Z = 0] = 7/8 for the other a = 11, . . . , 20.178

In this case, we can also calculate the outcome under the optimal action. That is, maxa∈A E[Y (a)] =179

E[E[Y |Z,X,A = a]] = 34/48 for a = 1, . . . , 10. We repeat the entire experiments over 300 epochs180

and visualize it in Figure 3. We find C-UCB incurs linear regret (worst-case rate), and HAC-UCB181

achieves sublinear regret, although worse than UCB as expected.182

4 Discussion183

4.1 Impossibility of Strict Adaptivity184

We now answer the question of strict adaptivity (adaptive minimax optimality) in the beginning. It185

is impossible for any algorithm to always realize the benefits of the conditionally benign property186

while also recovering the worst-case rate O(
√
|A|T ), even when the algorithm has access to the187

true marginals. Lu et al. (2020) shown that any algorithm that does not take advantage of causal188

structure cannot be adaptively minimax optimal; Bilodeau et al. (2022) further extend it to the case:189

even algorithms that use Z and ν̃a = νa cannot be adaptively minimax optimal. Therefore, it is190

still remains an open problem to find the maximal adaptability of bandit algorithms and develop the191

optimal algorithm in the sense of adaptivity.192
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Figure 3: Regret when the conditionally benign property fails

4.2 Improvement of Adaptability193

Here we propose a possible improvement of HAC-UCB to extend the adaptability beyond the194

conditionally benign environments. Consider the case A→ Z → Y with the presence of unmeasured195

confounding Z ← U → Y . The conditional begin property fails in this environment. However, it is a196

typical confounding case in causal inference. In this case, we can apply the instrumental variable (IV)197

estimation to correct the misleading effect due to the confounding as A now plays a role of an IV.198

Several researches has explore IV with contextual bandit problem. For instance, see Kallus (2017)199

and Zhang et al. (2022) for IV bandit algorithms. With the modification from IV, we can extend the200

ideas of HAC-UCB for improvement. Whenever we have enough evidence of disagreement between201

C-UCB and UCB, we further check if there is enough evidence that the IV bandit algorithms disagree202

with UCB neither. If so, we switch to UCB. Otherwise, we switch to the IV bandit algorithms203

to enjoy the benefit of lower regret rate from the causal-type algorithms since it indicates that the204

environment is the confounding case we considered. By doing so, we extend the adaptability beyond205

the conditionally benign environment. Therefore, we improve the adaptability of HAC-UCB.206
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