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1 Motivation

High-dimensional data arise in many modern scientific fields, in which cases the classical asymptotic
theory fails to apply to traditional statistics, e.g., two-sample tests. In classical asymptotic theory,
the number of variables p is a fixed constant. Let yn := p

n be the ratio that measures the difference
between the sample size n and p. It is clear that yn → 0 as n goes to infinity in the classical settings.
However, in high-dimensional scenario, p is no longer a constant and grows as n increases. When
n goes to infinity, yn will not vanishes but converges to a non-zero y since p also grows to infinity.
This fundamental difference of high-dimensional scenario completely break the limiting behavior of
traditional statistics. They even cause very large deviation from the truth in high dimensional cases,
as pointed out by Dempster (1958), T 2-test has much failure in high dimensional data. Therefore,
necessary correction or novel methods should be developed.

Several novel statistics have been proposed to overcome the difficulty of high-dimensional data.
Modern random matrix theory (RMT) has emerged as a particularly useful framework for analyzing
high-dimensional data. In the meanwhile, Friedman and Rafsky (1979) developed nonparametric
testing for two sample that can be applied to data with arbitrary dimension using the graph-based
approach. In this project, we aim to compare the power of two methods in the scenario that n,
p → ∞ with yn → y for the two-sample test. Specifically, we have a two-sample covariance testing
problem in high-dimensional scenario

• Data: X1 = {X1i}n1
i=1 with X1i ∼ Np(µ1, ,Σ1); X2 = {X2i}n2

i=1 with X2j ∼ Np(µ2, ,Σ2)

• Scenario: n, p → ∞ with yn := p
n → y ∈ (0, 1)

• Hypothesis: H0 : Σ1 = Σ2 v.s. Ha : Σ1 ̸= Σ2

• Goal: Compare the methods to find the powerful level-α test

In the simulation study, we compare the power of the following methods. One method proposed
by Bai et al. (2009) copes with high-dimensional effects using RMT and the other presented by
Chen and Friedman (2017) utilized similarity graphs to construct a powerful test statistic We
expect Chen’s method will outperform Bai’s eventually as y → 1. Because Bai’s method is valid for
all y ∈ (0, 1), we believe that Bai’s power should be greater than Chen’s method when y is in the
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middle of (0, 1). However, as y increases to 1, Bai’s method should be more unreliable. On the other
hand, Chen’s method does not have such restrictions and takes advantage of the non-parametric
method.

The rest of the paper was organized as following. Preliminary and useful RMT results were
recalled in Section 2. We devoted the methodology of this two methods to Sections 3 with the
minimum pre-requested background. Due to the page limit, some detail expressions in Section
2 and 3 are omitted, but can be found in their original paper. In Section 4, we compared their
numerical performance in our simulation study. Finally, in Section 5, we summarized our finding.

2 Background

In this section, we first review traditional likelihood ratio method (LRT), and then empathized some
useful results selected from Paul and Aue (2014). They will be applied to derive Bai’s corrected
likelihood ratio test (CLRT). Let X1 and X2 be two samples. For traditional LRT, we calculate
their sample covariance matrices, S1 and S2. We define the likelihood ratio as

L1 =
supθ∈Θ L(θ|X1,X2)

supθ∈Θ0
L(θ|X1,X2)

=
|S1|n1/2|S2|n2/2∣∣(n1/N)S1 + (n2/N)S2

∣∣N/2
,

where θ = {µ1, µ2,Σ1,Σ2} and N = n1 + n2. The LRT statistic can now calculated as TN =

−2 logL1. In classical scenario, Wilks’ theorem implies TN
d→ χ2

df−df0
, df − df0 =

p(p+1)
2 . However,

in high-dimensional scenario, analysis using RMT shows that TN
a.s.→ ∞, which leads to many false

rejections of H0. Therefore, the LRT must be corrected to extend to the high-dimensional regime.
Next, we review the result from RMT. Suppose that X is an N × N matrix with eigenvalues

λ1, . . . , λn ∈ C. The empirical distribution of the eigenvalues of X, referred to as the empirical
spectral distribution (ESD) of X, is the function N−1

∑N
i=1 δλi

, where δy denotes the Dirac mass at
y. If X is Hermitian, so that the eigenvalues of X are real, we can define the empirical distribution
function of X as FX(x) = N−1

∑N
j=1 1λj≤x for x ∈ R. For two-sample problem, we particularly

analyze the ESD F Vn
n , where Vn := S1S

−1
2 is the F -matrix.

Let Ã be the set of analytic complex functions, and G̃n(f) be the empirical process such that

G̃n(f) := p

∫ ∞

−∞
f(x)[F Vn

n − Fyn1 ,yn2
]dx, f ∈ Ã,

where F Vn
n is the empirical spectral distribution (ESD) of Vn := S1S

−1
2 for S1 and S2 being the

associated sample covariance matrices with n = (n1, n2), and Fyn1 ,yn2
is the limiting distribution of

F Vn
n . Bai presented the following theorem from Zheng (2012), which mainly establish the theoretical

guarantee of Bai’s CLRT.

Theorem 1. Let f1, . . . , fk ∈ Ã. For each p,
(
ξij1
)
and

(
ηij2
)
are i.i.d. real variables, 1 ≤ i ≤ p, 1 ≤

j1 ≤ n1, 1 ≤ j2 ≤ n2 . Eξ11 = Eη11 = 0, E |ξ11|2 = E |η11|2 = 1, and E |ξ11|4 = E |η11|4 < ∞.

Furthermore, yn1 → y1 ∈ (0, 1), yn2 → y2 ∈ (0, 1). Then, the random vector
(
G̃n (f1) , . . . , G̃n (fk)

)
weakly converges to a k-dimensional Gaussian vector with the mean vector m

(
fj
)
and the covariance

function v(fj , fℓ).

Both m(fj) and v(fj , fℓ) can be expressed by using contour integrals, and were shown in Bai’s
paper.
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3 Methodology

We divided the discussion into two subsections according to the methods

3.1 CLRT

Bai proposed a remedy scaling of the LR statistic TN such that the CLRT statistics weakly converges
to the Gaussian vector with the mean m(f) and covariance function v(f) specified in Bai’s theorem.
Let L1 be the traditional likelihood ratio test (LRT) statistic, f(x) = log

(
(n1/N)x+ n2/N

)
−

(n1/N) log x, G̃(f) = −2 logL1

N − p · Fyn1 ,yn2
(f). The we apply the previous theorem and obtain

Bai’s CLRT.

Theorem 2. Assuming that the conditions of the previous theorem hold under H0, and

f(x) = log
(
yn1 + yn2x

)
− yn2

yn1 + yn2

log x− log
(
yn1 + yn2

)
.

Then, under H0 and n1 ∧ n2 → ∞,

T̃N = v(f)−1/2

[
−2 logL1

N
− p · Fyn1 ,yn2

(f)−m(f)

]
⇒ N(0, 1),

where N = n1 + n2.

Both m(f) and v(f) are dependent only on (y1, y2) and again can be found explicitly in Bai’s
paper. This result, unlike tradictional LRT, is distribution-fee. For non-Gaussian data, CLRT is
a generalized pseudo-likelihood ratio test (or Gaussian LRT). However, there is no easy way to
generalize CLRT from y ∈ (0, 1) to y > 1 since L1 will become undefined.

3.2 Graph-based two-sample test

Chen presented a novel test statistic based on a similarity graph constructed on the pooled observa-
tions from two samples. This non-parametric method has good property of asymptotic distribution
free, which is shown to be powerful under location and scale alternatives. It transforms the original
data into graphs, and do inference based on the constructed graphs. It also allows the case p ≥ n,
which is not possible in CLRT. So Chen’s method can be a competitor with CLRT.

To be specific, Chen uses the kind of graphs, under which two observations are easier to be
connected, if their distances are closer. One test statistics is defined as :

S = (R1 − µ1, R2 − µ2) Σ
−1

(
R1 − µ1

R2 − µ2

)
(1)

where µ1 = E (R1) , µ2 = E (R2), and Σ is the covariance matrix of the vector (R1, R2)
′ under

permutation null distribution, which is shown asymptotically to be χ2 distribution.
Another test statistics we consider is

Zm = max(Zw, |Zdiff |) (2)

is shown to be asymptotically bi-variate Gaussian distributed, where

Zw =
qR1 + pR2 −

(
qE (R1) + pE (R2)

)
pq
√
|G|

Zdiff =
R1 −R2 −

(
E (R1)− E (R2)

)√
rpq|G|

(3)
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Equation 1 and 2 are related test statistics extracted from the graph edges connection, and
details for explaining them are omitted here.

4 Simulation

In this project, we compared two methods, CLRT, as a remedy scaling of the LR statistic, and
graph-based methods for high dimensional two sample test problem. For simplicity, we take n =
n1 = n2, to compare these two methods. Choosing σ1 = Ip, we simulate the alternatives for

• H1 : Σ1Σ
−1
2 = diag(3, 1, . . . , 1)

• H2 : Σ1 = aΣ2, a ∈ R, a is a pre-specified scalar standing for their difference extent that
changes with dimension to provide comparable power, a = c(1.4, 1.15, 1.1, 1.1, 1.1, 1.05)

Under several different choices of yn and a, we expect to observe the power of Chen’s eventually
dominates Bai’s as yn → 1. We summarized our results as follows.

Table 1: Size and power comparison under H1 when α = 0.05

(n, p)
CLR LR max gen

size power size power size power size power

100 5 0.065 0.957 0.069 0.963 0.055 0.457 0.047 0.471

400 20 0.068 0.997 0.086 1.000 0.055 0.343 0.051 0.323

800 40 0.066 1.000 0.143 1.000 0.053 0.308 0.044 0.292

1600 80 0.045 1.000 0.269 1.000 0.067 0.271 0.062 0.247

800 400 0.062 0.119 1.000 1.000 0.050 0.066 0.055 0.065

1000 500 0.072 0.122 1.000 1.000 0.056 0.071 0.046 0.067

2000 1000 0.066 0.114 1.000 1.000 0.046 0.071 0.048 0.053

3200 1600 0.077 0.132 1.000 1.000 0.049 0.069 0.059 0.070

Table 2: Size and power comparison under H2 when α = 0.05

(n, p)
CLR LR max gen

size power size power size power size power

100 5 0.065 0.642 0.069 0.668 0.055 0.786 0.047 0.783

400 20 0.068 0.473 0.086 0.642 0.055 0.996 0.051 0.995

800 40 0.066 0.438 0.143 0.710 0.053 1.000 0.044 1.000

1600 80 0.045 1.000 0.269 1.000 0.067 1.000 0.062 1.000

800 400 0.062 0.283 1.000 1.000 0.050 1.000 0.055 1.000

1000 500 0.072 0.366 1.000 1.000 0.056 1.000 0.046 1.000

2000 1000 0.066 0.797 1.000 1.000 0.046 1.000 0.048 1.000

3200 1600 0.077 0.312 1.000 1.000 0.049 1.000 0.059 1.000

• When yn is relatively small, CLRT is shown to control the size well, which indeed corrects
the traditional LRT. However, if yn is relatively larger, CLRT’s size did not controlled wll for
n ranges from hundreds to even thousands. Thus, their convergence rate is fairly slow. For
the graph-based method, the size, oppositely, can be controlled well across all scenarios.
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• When there is sparse difference in the covariance structure, CLRT performs better than the
graph-based method. However, when the difference is not sparse enough, the graph-based
method is better. It follows from that the graph methods are more robust by combining
information from all dimensions together.

• Concerning the running time, CLRT is more time consuming than graph-based methods, even
thousands times slower when dimension is in thousand scale.

• CLRT is limited to y ∈ (0, 1), while the graph-based methods can allow for y > 1.

• CLRT is only designed to detect the covariance difference, while graph-based methods are
designed for both mean and covariance differences.

5 Conclusion

Although in practice we may still apply both methods to test the covariance difference between
two samples, in principle, when we already know that the structure difference can only be sparse
covariance difference, and y < 1

2 , we recommend using CLRT method, otherwise, we had better
implement graph-based methods.
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