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1 Motivations

• Sleep stage is related to health. We want to estimate the real sleep stages
with the observation data so as to enhance the convenience and efficiency
of diagnosis.

• This project will use the hidden Markov models and codebook method to
classify the observation states, compute the transition and the emission
matrix, and predict the hidden states.

2 Codebook

Goal: Given a time sequence X = {Xt}Tt=1, how to find a function f such that
f : X → {1, 2, ...,K} for some predetermined K ∈ N ?

Definition 1 (Method 1: K-means). ∀k ∈ {1, 2, ...,K}, we define C
(i)
k := {xj ∈

X |
∥∥∥xj − µ(i)

k

∥∥∥ ≤ ∥∥∥xj − µ(i)
k′

∥∥∥, ∀k′ 6= k}.

Repeat this process; then, we set f(xj) = k, if xj ∈ C
(final)
k . The function f

classifies all elements in X into K distinctive classes.

• Advantage: Low complexity and no requirement of the labels information

• Disadvantage: Different initial mean µ1
k causes different clustering, and

low stability of the algorithm.

After having labeled(T1 datas) by the experienced, cluster the others by K-
mean.

Definition 2 (Method 2: Adjusted K-means). Given a time sequence X =
{xt}T1+T2

t=1

∀y ∈ Y = {1, 2, ..., 5}
Xy := {xt : 1 ≤ t ≤ T1, yt = y}
Apply K-mean to each Xy, generates
γy : {µy1, µ

y
2, µ

y
3}

Redenote {µ1, ..., µ15}
Coding {xt}T1+T2

t=T1+1

Next, we take the advantage of the time information.
ex:

..., A , (B,B) , (B,B) , (B,B) , A , ...

∈ XB,in ∈ XB,mid ∈ XB,out

where XB = {xt : 1 ≤ t ≤ T, yt = B} = XB,in

⋃
XB,mid

⋃
XB,out.

Apply K-means to XB,in, XB,mid, XB,out to get γB .
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3 Markov Chain Models

Notations:

• SX = {s1, s2, ..., sn}: the state space

• {Xt}Tt=1: a sequence of SX -valued random variables defined on a suitable
probability space

• {xt}Tt=1 : a sequence of the outcomes of {Xt}Tt=1

• π = (π(i))ni=1 = (π(si))
n
i=1: the initial distribution of {Xt}Tt=1

• A = (aij) ∈ Rn×n : the transition matrix of {Xt}Tt=1, where aij = asisj =
P(Xt = sj |Xt−1 = si) is the probability of going from state si at time
t− 1 to state sj at time t

• {Xt
1 = xt1}: the abbreviation of {X1 = x1, X2 = x2, ..., Xt = xt}

for t = 1, 2, ..., T .

Definition 3 (Markov Property). A process {Xt}Tt=1 is called a Markov chain
if it satisfies P(Xt = xt|Xt−1

1 = xt−1
1 ) = P(Xt = xt|Xt−1 = xt−1) for t =

2, 3, ..., T .

Thus, we can derive the joint probability distribution of (X1, X2, ..., XT ) by
P(XT

1 = xT1 )

= P(X1 = x1)
∏T
t=2 P(Xt = xt|Xt−1

1 = xt−1
1 ) Tower Law

= P(X1 = x1)
∏T
t=2 P(Xt = xt|Xt−1 = xt−1) Markov Property

= π(x1)
∏T
t=2 axt−1xt

.
Furthermore, the result is also called the time-homogeneous property.

4 Hidden Markov Models

Notations:

• SX = {s1, ...sn}: the hidden state space

• SY = {v1, ...vm}: the observation state space

• {Xt}Tt=1 : a hidden state process, that is, a sequence of random variables
taking values in SX

• {xt}Tt=1 : a realization of the hidden state process {Xt}Tt=1

• {Yt}Tt=1 : an observation state process, that is, a sequence of random
variables taking values in SY

• {yt}Tt=1 : a realization of the observation state process {Yt}Tt=1

• π = (π(i))ni=1 = (π(si))
n
i=1: the initial distribution of {Xt}Tt=1
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Notations:

• A = (aij) ∈ Rn×n: the transition matrix of {Xt}Tt=1, where aij = asisj =
P(Xt = sj |Xt−1 = si) is the probability of going from state si at time
t− 1 to state sj at time t

• B = (bj(k)) ∈ Rn×m: the emission matrix of {Yt}Tt=1, where bj(k) =
bsj (vk) = P(Yt = vk|Xt = sj) is the probability of observing the state vk
given by the hidden state sj

Definition 4 (Hidden Markov Model). A process {(Xt, Yt)}Tt=1 is called a hid-
den Markov model if it satisfies

P(Xt = xt, Yt = yt|Xt−1
1 = xt−1

1 , Y t−1
1 = yt−1

1 )

= P(Xt = xt|Xt−1 = xt−1)P(Yt = yt|Xt = xt)

for t = 2, 3, ..., T .

With the previous notations, it can be written as P(Xt = xt, Yt = yt|Xt−1
1 =

xt−1
1 , Y t−1

1 = yt−1
1 ) = axt−1xt

bxt
(yt).

Some observations of the hidden Markov model:

• {(Xt, Yt)}Tt=1 is a two-dimensional Markov chain.

• {Xt}Tt=1 is a Markov chain with initial distribution π and transition matrix
A.

• Y1, ..., YT are conditionally independent given X1, ..., XT , that is, P(Y T1 =

yT1 |XT
1 = xT1 ) =

∏T
t=1 bxt(yt).

• The joint probability distribution of (X1, Y1, ..., XT , YT ) is

Pλ(XT
1 = xT1 , Y

T
1 = yT1 ) = π(x1)bx1(y1)

∏T
t=2 axt−1xtbxt(yt), where λ =

(π,A,B) is the parameter of the hidden Markov model.

Here is an example of the hidden Markov model.
Three problems of the hidden Markov models:
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1. Scoring: Given the observation {yt}Tt=1 and the parameter λ, how do we
compute the score Pλ(Y T1 = yT1 ) ?

2. Decoding: Given the observation {yt}Tt=1 and the parameter λ, how do we
choose the corresponding optimal hidden state sequence that is the best
explanation of the observations?

3. Estimation: How do we adjust the parameter λ to maximize Pλ(Y T1 =
yT1 )?

Since we would like to predict the subjects’ hidden states, our experiment will
follow by estimating the sleeping data, scoring by the forward and backward
algorithm with rescaling, and decoding the hidden state sequence via the Baum-
Welch algorithm.

Proposition 1 (Estimation). Given realizations {xt}Tt=1 and {yt}Tt=1, we es-
timate the transition matrix Â = (âij) ∈ Rn×n and the emission matrix B̂ =

(b̂j(k)) ∈ Rn×m by

âij =
#({t | Xt+1 = sj , Xt = si})

#({t | Xt = si})

and

b̂j(k) =
#({t | Yt = vk, Xt = sj})

#({t | Xt = sj})
,

where #( · ) means the number of the events.

5 Baum-Welch Algorithm

Given a realization {yt}Tt=1 of the observation process {Yt}Tt=1, we would like to
predict ”the most possible outcome” of the hidden state Xt at time t, denoted
by x̂t. That is, x̂t = arg maxsj∈Sx

P(Xt = sj |Y T1 = yT1 ). With some knowledge
of the conditional probability, we can derive that

P(Xt = sj |Y T1 = yT1 ) =
P(Y t1 = yt1, Xt = sj , Y

T
t+1 = yTt+1)

P(Y T1 = yT1 )

=
P(Y t1 = yt1, Xt = sj)

P(Y T1 = yT1 )

P(Y t1 = yt1, Xt = sj , Y
T
t+1 = yTt+1)

P(Y t1 = yt1, Xt = sj)

= C · P(Y t1 = yt1, Xt = sj)P(Y Tt+1 = yTt+1|Y t1 = yt1, Xt = sj),

where C = (P(Y T1 = yT1 ))−1 is independent of the choices of sj .
Therefore, we are curious about the following two quantities.

Definition 5. • αt(j) = P(Y t1 = yt1, Xt = sj): the probability of the prior
observation sequence from 1 to t and the hidden state sj at time t

• βt(j) = P(Y Tt+1 = yTt+1|Xt = sj): the probability of the later observation
sequence from t+ 1 to T given the hidden state sj at time t
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Then, we now introduce the Baum-Welch Algorithm to decode the optimal
hidden state process {Xt}Tt=1.

Theorem 1 (Baum-Welch Algorithm). x̂t = arg maxj∈{1,2,...,n} αt(j)βt(j) for
t = 1, 2, ..., T .

The procedure of Baum-Welch algorithm is demonstrated by the following
figure.

6 Forward Algorithm

To calculate αt(j) = P(Y t1 = yt1, Xt = sj) = the probability of the prior obser-
vation sequence from 1 to t and the hidden state sj at time t
(a) Initiation: t = 1
α1(j) = P(Y1 = y1, X1 = sj) = π(j)bj(y1) for j = 1, 2, ..., n
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(b) Induction: t = 2, 3, ..., T

αt(j) =P(Y t1 = yt1, Xt = sj)

=

n∑
i=1

P(Y t−1
1 = yt−1

1 , Xt−1 = si, Y
T
t = yTt , Xt = sj)

by the partition on Xt−1

=

n∑
i=1

P(Y t−1
1 = yt−1

1 , Xt−1 = si)

× P(Y Tt = yTt , Xt = sj |Y t−1
1 = yt−1

1 , Xt−1 = si)

by the conditional probability

=

n∑
i=1

P(Y t−1
1 = yt−1

1 , Xt−1 = si)

× P(Y Tt = yTt , Xt = sj |Y t−1
1 = yt−1

1 , Xt−1 = si)

by the hidden Markov model

=

n∑
i=1

αt−1(i)aijbj(yt)

(c) Termination:

P(Y T1 = yT1 ) =

N∑
i=1

αT (i)

We conclude the forward algorithm by the following pseudocode.

Theorem 2 (Forward Algorithm).

1. initial α1(j) = π(j)bj(y1) for j = 1, 2, ..., n

2. for t = 2 : T

αt(j) =

n∑
i=1

αt−1(i)aijbj(yt) for j = 1, 2, ..., n

7 Backward Algorithm

To calculate βt(j) = P(Y Tt+1 = yTt+1|Xt = sj)= the probability of the later
observation sequence from t+ 1 to T given the hidden state sj at time t
(a) Initiation: t = T ,
βT (j) = 1 for j = 1, 2, ..., n
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(b) Induction: t = T − 1, T − 2, ..., 1

βt(j) =P(Y Tt+1 = yTt+1|Xt = sj)

=

n∑
i=1

P(Xt+1 = si, Y
T
t+1 = yTt+1|Xt = sj)

=

n∑
i=1

P(Xt+1 = si, Yt+1 = yt+1|Xt = sj)

× P(Y Tt+2 = yTt+2|Xt = sj , Xt+1 = si, Yt+1 = yt+1)

=

n∑
i=1

P(Xt+1 = si, Yt+1 = yt+1|Xt = sj)

× P(Y Tt+2 = yTt+2|Xt = sj , Xt+1 = si, Yt+1 = yt+1)

by the hidden Markov model

=

n∑
i=1

P(Xt+1 = si, Yt+1 = yt+1|Xt = sj)P(Y Tt+2 = yTt+2|Xt+1 = si)

=

n∑
i=1

ajibi(yt+1)βt+1(i)

(c) Termination:

P(Y T1 = yT1 ) =

n∑
i=1

P(X1 = si, Y
T
1 = yT1 )

=

n∑
i=1

P(X1 = si, Y1 = y1) · P(Y T2 = yT2 |X1 = si, Y1 = y1)

by the hidden Markov model

=

n∑
i=1

P(X1 = si, Y1 = y1) · P(Y T2 = yT2 |X1 = si)

=
n∑
i=1

π(i)bi(y1)β1(i)

We conclude the backward algorithm by the following pseudocode.

Theorem 3 (Backward Algorithm).

1. initial βT (j) = 1 for j = 1, 2, ..., n

2. for t = T − 1 : 1

βt(j) =

n∑
i=1

ajibj(yt+1)βt+1(i) for j = 1, 2, ..., n
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8 Rescaling

Goal: to mitigate floating point error as t is large(resp. small) αt(j) (resp.βt(j))
is small enough to make αt(j) · βt(j) machine zero.
We multiply αt(j) by a constant depending only on time.

Set

Ct =

(
n∑
i=1

α̃t(i)

)−1

∀ 2 ≤ t ≤ T

where α̃t(j) is defined as:

α̃t(j) =


αt(j) if t = 1
n∑
i=1

α̂t−1(i)aijbj(yt) if 2 ≤ t ≤ T

where α̂t(i), the value we recorded, is the normalized value of α̃t(i), i.e.

α̂t(i) = Ct · α̃t(i) and

n∑
i=1

α̂t(i) = 1

And we have the following rescaling of αt(i), and βt(i):

α̂t(i) =

t∏
k=1

Ck · αt(i) for i = 1, 2, ..., n, t = 1, 2, ..., T

β̂t(i) =

T∏
k=t

Ck · βt(i) for i = 1, 2, ..., n, t = 1, 2, ..., T

The algorithm in code goes as follows:

α1 = α̃1
C1−−→ α̂1

F.W.−−−→ α̃2
C2−−→ α̂2

F.W.−−−→ ...
CT−1−−−→ α̂T−1

F.W.−−−→ α̃T
CT−−→ α̂T

βT = β̃T
CT−−→ β̂T

B.W.−−−→ β̃T−1
CT−1−−−→ β̂T−1

B.W.−−−→ ...
C2−−→ β̂2

B.W.−−−→ β̃1
C1−−→ β̂1

Theorem 4. The Baum-Welch algorithm can be improved by

x̂t = arg max
j

αt(j)βt(j) = arg max
j

α̂t(j)β̂t(j)

Proof. Since

α̂t(j)β̂t(j) =

t∏
k=1

Ckαt(i)

T∏
k=t

Ckβt(i) = C · Ct [αt(j)βt(j)]

where C =

T∏
k=1

Ck, and C,Ct are independent of the choice of j.
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9 Second-order Hidden Markov Models

Now we consider an extension of previous model, we assume that {Xt}Tt=1 is a
second-order Markov chain. Also, we impose three assumptions of the extension:

1. P(Xt = xt|Xt−1
t−2 = xt−1

t−2, Y
t−1
1 = yt−1

1 ) = P(Xt = xt|Xt−1
t−2 = xt−1

t−2)

2. P(Yt = yt|Xt
1 = xt1, Yt−1 = yt−1) = P(Yt = yt|Xt = xt, Yt−1 = yt−1)

3. P(Y Tt+1 = yTt+1|Xt
t−1 = xtt−1, Y

t
1 = yt1)

= P(Y Tt+1 = yTt+1|Xt
t−1 = xtt−1, Yt = yt)

Notations:

• A′ = (aij) ∈ Rn×n: the second stage transition matrix where aij = asisj =
P(X2 = sj |X1 = si) is the probability of going from state si at time 1 to
state sj at time 2

• A = (aijk) ∈ Rn×n×n: the transition matrix of {Xt}Tt=2 where aijk =
asisjsk = P(Xt = sk|Xt−2 = si, Xt−1 = sj) is the probability of going
from state si at time t− 2 and state sj at time t− 1 to state sk at time t

• B′ = (bj(k)) ∈ Rn×m: the first-observation emission matrix, where bj(k) =
bsj (vk) = P(Y1 = vk|X1 = sj) is the probability of observing the state vk
given by the hidden state sj

• B = (bj(k|l)) ∈ Rn×m×m: the emission matrix of {Yt}Tt=2, where bj(k|l) =
bsj (vk|vl) = P(Yt = vk|Xt = sj , Yt−1 = vl) is the probability of observing
the state vk at time t given by the hidden state sj at time t and the
observation state vl at time t− 1

As the previous discussion, we would like to extend the Baum-Welch al-
gorithm to the second-order hidden Markov model. Let γt(i, j) = P(Xt−1 =
si, Xt = sj |Y T1 = yT1 ).

Theorem 5 (Extended Baum-Welch Algorithm). (x̂t−1, x̂t) = arg maxsi,sj∈SX
γt(i, j)

for t = 2, ...T−1, x̂1 = arg maxsj∈SX

∑n
k=1 γ2(j, k), and x̂T = arg maxsj∈SX

∑n
i=1 γT (i, j).

Since x̂t will be predicted twice, we let x̂
(1)
t = arg maxsj∈SX

∑
si∈SX

γt(i, j)

and x̂
(2)
t = arg maxsj∈SX

∑
sk∈SX

γt+1(j, k); then choose

x̂t = arg max
x̂
(1)
t ,x̂

(2)
t
{
∑n
i=1 γt(i, x̂

(1)
t ),

∑n
k=1 γt+1(x̂

(2)
t , k)} for t = 2, 3, ..., T − 1.

With some knowledge of the conditional probability, we can derive that

γt(i, j) =
P(Xt−1 = si, Xt = sj , Y

t
1 = yt1, Y

T
t+1 = yTt+1)

P(Y T1 = yT1 )

=
P(Xt−1 = si, Xt = sj , Y

t
1 = yt1)

P(Y T1 = yT1 )

× P(Y Tt+1 = yTt+1|Xt−1 = si, Xt = sj , Y
t
1 = yt1)

=C × P(Xt−1 = si, Xt = sj , Y
t
1 = yt1)

× P(Y Tt+1 = yTt+1|Xt−1 = si, Xt = sj , Yt = yt),
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where C = (P(Y T1 = yT1 ))−1 is independent of the choices of si and sj .
Hence, we are curious about the following two quantities.

Definition 6.

• αt(i, j) = P(Xt−1 = si, Xt = sj , Y
t
1 = yt1): the probability of the prior

observation yt1, the hidden state sj at time t, and si at time t− 1.

• βt(i, j) = P(Y Tt+1 = yTt+1|Xt−1 = si, Xt = sj , Yt = yt): the probability of
the later observation yTt+1 given the hidden state sj at time t

To calculate αt(i, j) = P(Xt−1 = si, Xt = sj , Y
t
1 = yt1) = the probability of

the partial observation yt1 and state si at time t− 1 and state sj at time t.
(a) Initiation: t = 2,

α2(i, j) =P(X1 = si, X2 = sj , Y
2
1 = y2

1)

=P(Y2 = y2|X1 = si, X2 = sj , Y1 = y1)

× P(X2 = sj |X1 = si, Y1 = y1)P(Y1 = y1|X1 = si)P(X1 = si)

=P(Y2 = y2|X2 = sj , Y1 = y1)P(X2 = sj |X1 = si)

× P(Y1 = y1|X1 = si)P(X1 = si)

=bj(y2|y1)aijbi(y1)π(i)

(b) Induction: t = 3, 4, ..., T

αt(j, k) =P(Xt−1 = sj , Xt = sk, Y
t
1 = yt1)

=
∑
si∈SX

P(Xt−2 = si, Xt−1 = sj , Xt = sk, Y
t
1 = yt1)

=
∑
si∈SX

P(Xt−2 = si, Xt−1 = sj , Y
t−1
1 = yt−1

1 )

× P(Xt = sk, Yt = yt|Xt−2 = si, Xt−1 = sj , Y
t−1
1 = yt−1

1 )

=
∑
si∈SX

αt−1(i, j)P(Xt = sk|Xt−2 = si, Xt−1 = sj , Y
t−1
1 = yt−1

1 )

× P(Yt = yt|Xt−2 = si, Xt−1 = sj , Xt = sk, Y
t−1
1 = yt−1

1 )

=
∑
si∈SX

αt−1(i, j)aijkbk(yt|yt−1)

(c) Termination:

P(Y T1 = yT1 ) =
∑

si,sj∈SX

αT (i, j)

We conclude the forward algorithm by the following pseudocode.

Theorem 6 (Extended Forward Algorithm).

1. initial: α2(i, j) = π(i)aijbi(y1)bj(y2|y1)
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2. for t = 3:T
αt(j, k) =

∑
si∈SX

αt−1(i, j)aijkbk(yt|yt−1)

To calculate βt(i, j) = P(Y Tt+1 = yTt+1|Xt−1 = si, Xt = sj , Y
t
1 = yt1) = the

probability of the partial observation sequence from time t+ 1 to T , given state
si at time t− 1, state sj at time t and observation at time t.
(a) Initiation: t = T

βT (i, j) = 1

(b) Induction: t = 2, 3, ..., T − 1

βt(i, j) =P(Y Tt+1 = yTt+1|Xt−1 = si, Xt = sj , Yt = yt)

=
∑
sk∈SX

P(Y Tt+1 = yTt+1, Xt+1 = sk|Xt−1 = si, Xt = sj , Yt = yt)

=
∑
sk∈SX

P(Y Tt+2 = yTt+2|Xt−1 = si, Xt = sj , Xt+1 = sk, Y
t+1
t = yt+1

t )

× P(Yt+1 = yt+1|Xt−1 = si, Xt = sj , Xt+1 = sk, Yt = yt)

× P(Xt+1 = sk|Xt−1 = si, Xt = sj , Yt = yt)

=
∑
sk∈SX

P(Y Tt+2 = yTt+2|Xt = sj , Xt+1 = sk, Y
t+1
t = yt+1

t )

× P(Yt+1 = yt+1|Xt+1 = sk, Yt = yt)P(Xt+1 = sk|Xt−1 = si, Xt = sj)

=
∑
sk∈SX

βt+1(j, k)bk(yt+1|yt)aijk

(c) Termination:

P(Y T1 = yT1 ) =

N∑
i,j=1

P(X1 = si, X2 = sj , Y
T
1 = yT1 )

=

N∑
i,j=1

P(Y T3 = yT3 |X1 = si, X2 = sj , Y
2
1 = y2

1)

× P(X1 = si, X2 = sj , Y
2
1 = y2

1)

=

N∑
i,j=1

β2(i, j)bj(y2|y1)aijbj(y1)π(i)

We conclude the backward algorithm by the following pseudocode.

Theorem 7 (Extended Backward Algorithm).

1. initial: βT (i, j) = 1

12



2. for t = T-1:1
βt(i, j) =

∑
sk∈SX

aijkbk(yt+1|yt)βt+1(j, k)

Similar to the original rescaling, we set

Ct =

 N∑
i,j=1

α̃t(i, j)

−1

Proposition 2. α̂t(i, j) =
∏t
k=2 Ckαt(i.j) for i = 1, 2, ..., n, t = 1, 2, ..., T

Proposition 3. β̂t(i, j) =
∏T
k=t Ckβt(i, j) for i = 1, 2, ...., n, t = 1, 2, ..., T

Note that α̂t(i, j) and β̂t(i, j) are not small enough to be machine zero.

Theorem 8. For these new (scaled) value, the Baum-Welch algorithm holds,
that is,

x̂t = arg max
i,j

αt(i, j)βt(i, j) = arg max
i,j

α̂t(i, j)β̂t(i, j).

Proof.

α̂t(i, j)β̂t(i, j) = (

t∏
k=2

Ck)αt(i.j)(

T∏
k=t

Ck)βt(i, j)

= C · Ct · αt(i.j) · βt(i, j),

where C =
∏T
k=2 Ck.

10 Experiment

Given 39 subjects’ sleeping data, including feature and label,

feature ∈ R42308×10

feature 38 ∈ R41280×10

feature 39 ∈ R1028×10

label ∈ {Awake, REM, N1, N2, N3}42308

label 38 ∈ {Awake, REM, N1, N2, N3}41280

label 39 ∈ {Awake, REM, N1, N2, N3}1028

we apply method 1 and 2 and then compare the results.

• Use the first 38 subjects’ data as a training set to run K-means.

• Set K=15.

• Estimate the first 38 subjects’ observation state
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Figure 1: The distribution of 38 sub-
jects’ labels

Figure 2: The distribution of the 39th
subject’s labels

• Use the 15 means to classify the 39th subject’s data and get the observation
data.

• Use the first 38 subjects’ data to compute the transition matrix and emis-
sion matrix.

• Apply to the 39th subject’s observation data and get the prediction of the
39th subject’s hidden state.

• Compute the accuracy .

• Get the first 38 subjects’ labels and collect every category.

• Run K-means on each category (Knew=3).

• Use the 15 means to classify the 39th subject’s data and get the observation
data.

• Use the first 38 subjects’ data to compute the transition matrix and emis-
sion matrix.

• Apply to the 39th subject’s observation data and get the prediction of the
39th subject’s hidden state.

• Compute the accuracy.

11 Visualization

Accuracy of method 1 = 0.7802 Accuracy of method 2 = 0.7879
Accuracy of method 1 = 0.8239 Accuracy of method 2 = 0.8084
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Figure 3: confusion matrix of method 1Figure 4: confusion matrix of method 2

Figure 5: precision of method 1 Figure 6: precision of method 2

Figure 7: recall of method 1 Figure 8: recall of method 2
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Figure 9: confusion matrix of method 1
Figure 10: confusion matrix of method
2

Figure 11: precision of method 1 Figure 12: precision of method 2

Figure 13: recall of method 1 Figure 14: recall of method 2
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12 Conclusion

For the first-order HMM

• From accuracy viewpoint, method 2 is better than method 1.

• From precision viewpoint, the performance on REM,N1,N2,N3 of method
2 is better than method 1.

• From recall viewpoint, the performance on N1,N2,N3 of method 2 is better
than method 1.

• The performance on the third class of both methods is not as well as our
expectation.

For the second-order HMM

• From accuracy viewpoint, method 1 is better than method 2.

• From precision viewpoint, the performance on AWAKE,REM,N3 of method
1 is equal or better than method 2.

• From recall viewpoint, the performance on AWAKE,REM,N2 of method
1 is better than method 2.

• The performance on the third class of both methods is not as well as our
expectation.

• The accuracy of both method 1 and 2 are higher than first-order HMM.

13 Improvement

• Since our methods to classification don’t take time effect into account, we
can’t figure out the time relation between each data point after clustering.

• One may use method 3 to take time effect into account and compare the
result to the previous.

• Since the limit of the hidden Markov models, one may consider a more
complicated model, take more information into account, and compare the
result to the previous.
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