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1 Introduction and Data Exploration

In this project, we briefly explore the diabetes dataset and fit the linear regression using shrinkage approach
using Lasso and adaptive Lasso. To be specific, we (i) summarize the main results related to Lasso, Least Angle
Regression (LARS), and Adaptive Lasso, (ii) implement Lasso and Adaptive Lasso algorithms and apply our
algorithm to a dataset containing information about diabetes patients and select models using AIC and BIC;
(iii) finally compare results with Efron et al. (2004) paper [EHJT04].

The diabetes data information is related to 442 diabetes patients [EHJT04]. The response y is a measure of
disease progression over one year, which is a continuous variable. The 10 predictor variables are listed below.

Besides, the correlation plots of the predictors in Diabetes Dataset is given in the left of Figure 1. The correlation
figure indicates that some of the predictors in the data are strongly correlated. Besides, the histogram of
response variables are given in the right of Figure 1. Based on the histogram, we see that the response variable
is right-skewed.

2 Summary of Shrinkage Methods: Lasso

2.1 Introduction and Background

The LASSO approach, firstly developed by [Tib96], is a shrinkage method for estimation in linear models which
minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than
a constant. Formally, suppose we have an input vector XT = (1,x1,x2, . . . ,xp) and want to predict a real-value
output Y . The linear regression model has the form f(X) = β0+

∑p
j=1Xjβj where X is the N × (p+1) matrix

with each row an input vector, and y is the N -vector of outputs in the training set. The lasso estimator which
is is a constrained version of ordinary least squares estimator, is defined by

β̂lasso = argmin
β

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

s.t.

p∑
j=1

|βj | ⩽ t (1)
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Figure 1: Correlation Plot (Left) and Histogram of the response variable (Right)

The lasso problem in the equivalent Lagrangian form

β̂lasso = argmin
β


N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

+ λ

p∑
j=1

|βj |

 (2)

Similarly to the ridge regression problem: the L2 penalty in ridge regression problem,
∑p

j=1 β
2
j , is replaced by

the L1 lasso penalty
∑p

j=1 |βj |. This latter constraint makes the solutions nonlinear in the yi, and there is no
closed form expression as in ridge regression unless additional assumptions of the input matrix are made.

When the predictors are orthonormal XTX = I and the ordinary least squared estimate of β is given by
β̂OLS = XTy. If we use the notation β̂lasso

j and β̂OLS
j to denote the j-th components of lasso estimator and

ordinary least square estimator, it can be shown (proof attached in Appendix A.1) that in this case,

β̂lasso
j = +

λ

2
+ β̂OLS

j β̂lasso
j < 0

β̂lasso
j = −λ

2
+ β̂OLS

j β̂lasso
j > 0

(3)

By using the notation sign that denotes the signature, x+ denotes the positive part of x and letting γ = λ
2 , we

will find the estimators given above can be written as

sign(β̂OLS
j )(|β̂OLS

j | − γ)+ (4)

2.1.1 Geometrical Intuition of Lasso

The reason why Lasso can shrinkage some coefficients to zero comes from the geometrical properties of the
penalty terms. Some insights for the case p = 2 can be provided by noticing that the target optimization
function in regression problem

RSS(β) =
N∑
i=1

(yi −
p∑

j=1

βjxi,j)
2

equals the quadratic function

RSS(β) = (y −Xβ)T (y −Xβ) = (y −Xβ̂OLS +Xβ̂OLS −Xβ)T (y −Xβ̂OLS +Xβ̂OLS −Xβ)

= RSS(β̂OLS) + (β − β̂OLS)TXTX(β − β̂OLS) + 2(y −Xβ̂OLS)T (Xβ̂OLS −Xβ)
(5)
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which is an oblique elliptical in geometry view. For p = 2, the residual sum of squares has elliptical contours,
centered at the full least squares estimate. The constraint region for ridge regression is the disk β2

1 + β2
2 ⩽ t,

while that for lasso is the diamond |β1|+ |β2| ⩽ t. Both methods find the first point where the elliptical contours
hit the constraint region. Unlike the disk, the diamond has corners; if the solution occurs at a corner, then it
has one parameter βj equal to zero. When p > 2, the diamond becomes a rhomboid, and has many corners,
flat edges and faces; there are many more opportunities for the estimated parameters to be zero.

2.1.2 Standard Errors

Since the lasso estimator is a non-linear and non-differentiable function of the response values even for a fixed
value of t, it is difficult to obtain an accurate estimate of its standard error. By writing the penalty

∑
|βj | as∑

|βj |2/|βj |, an approximate closed form estimate for the lasso estimate β̃ can be derived to be of the form

β̂ = (XTX+ λW−)−1XTy

where W is a diagonal matrix with diagonal elements β̃j , W
− denotes the generalized inverse of W and λ is

chosen so that
∑

|β̂j | = t. The covariance matrix of the estimates may then be approximated by

(XTX+ λW−)−1XTX(XTX+ λW−)−1σ̂2

where σ̂2 is an estimate of the error variance.

2.1.3 Algorithms for Finding Lasso Solutions

Computing the lasso solution is a quadratic programming problem. We fix t ⩾ 0 and recall that the lasso is a
shrinkage method which is defined by:

β̂lasso = argmin
β

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

s.t.

p∑
j=1

|βj | ⩽ t

Therefore, the problem can be expressed as a least squares problem with 2p inequality constraints, corresponding
to the 2p different possible signs for the βj ’s. The naive approach to calculating the Lasso estimator follows
from the ingredients for a procedure which solves the linear least squares problem subject to a general linear
inequality constraint in [LH95]. Suppose that the linear inequality constraint is given by Gβ ⩽ h and G is an
m×pmatrix, corresponding tom linear inequality constraints on the p vector β, let g(β) =

∑N
i=1(yi−

∑
j βjxij)

2

and δi, i = 1, 2, . . . , 2p be the p-tuples of the form (±1,±1, . . . ,±1), then the condition
∑

|βj | ⩽ t is equivalent
to δTi β ⩽ t for all i. For a given β, let

E =
{
i : δTi β = t

}
S =

{
i : δTi β < t

}
The set E is the equality set, corresponding to those constraints which are exactly met, whereas S is the slack
set, corresponding to those constraints for which equality does not hold. Denote by GE the matrix whose rows
are δi for i ∈ E. Let 1 be a vector of 1s of length equal to the number of rows of GE .

(a) Start with E = {i0} where δi0 = sign(β̂OLS), β̂OLS being the overall least squares estimate.

(b) β̂ to minimize g(β) subject to GEβ ⩽ t1.

(c) While
{∑

|β̂j | > t
}

(d) Add i to the set E where δi = sign(β̂). Find β̂ to minimize g(β) subject to GEβ ⩽ t1.
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2.1.4 Further Discussion for Lasso

We can generalize ridge regression and the lasso. Consider the criterion for q ⩾ 0

β̃ = argmin
β


N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj |q
 (6)

• The value q = 0 corresponds to variable subset selection, as the penalty simply counts the number of
nonzero parameters;

• q = 1 corresponds to the lasso;

• q = 2 corresponds to ridge regression.

The case q = 1 (lasso) is the smallest q such that the constraint region is convex; non-convex constraint regions
make the optimization problem more difficult. Looking again at the criterion (6), we might try using other
values of q besides 0, 1, or 2. Values of q ∈ (1, 2) suggest a compromise between the lasso and ridge regression.
Although this is the case, with q > 1, |βj |q is differentiable at 0, and so does not share the ability of lasso
(q = 1) for setting coefficients exactly to zero. Partly for this reason as well as for computational tractability,
[ZH05] introduced the elastic-net penalty

λ

p∑
j=1

(αβ2
j + (1− α)|βj |)

a different compromise between ridge and lasso.

2.2 Adaptive Lasso Regression

2.2.1 Introduction and Background

Based on lasso, [ZH05] comes up with the adaptive lasso, which enjoys the oracle properties:

• Identifies the right subset model,
{
j : β̂j ̸= 0

}
= A.

• Has the optimal estimation rate,
√
n
(
β̂(δ)A − β∗

A

)
→d N(0,Σ∗), where Σ∗ is the covariance matrix

knowing the true subset model.

2.2.2 Definition

[ZH05] has shown that the lasso cannot be an oracle proceduree by giving a counterexample. Authors created
new methodology called adaptive lasso assigning different weights to different coefficients. They have shown that
if the weights are data-independent and cleverly chosen, then the weighted lasso can have the oracle properties.
Suppose that β̂ is a root-n-consistent estimator to hatβ∗; for example, β̂(ols) can be used. Pick γ > 0, and
define the weight vector ŵ = 1

|β̂|γ
. The adaptive lasso estimates β̂∗(n) are given by

β̂∗(n) = argmin
β

∥∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥∥
2

+ λn

p∑
j=1

ŵj |βj | . (7)

2.2.3 Oracle Properties

Suppose that λn/
√
n → 0 and λnn

(γ−1)/2 → ∞. Then the adaptive lasso estimates must satisfy the following:

• Consistency in variable selection: limn P (A∗
n = A) = 1

• Asymptotic normality:
√
n
(
β̂
∗(n)
A − β∗

A

)
→d N

(
0, σ2× C−1

11

)
.
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2.3 Least Angle Regression

The algorithm given in section 2.1.3 is computational inefficiently and in many cases, Least Angle Regression
Algorithm can be used to calculate the Lasso Estimator.

2.3.1 Algorithm for LAR

Least angle regression (LAR) is firstly introduced in [EHJT04] and is a modified version of forward stepwise
regression. Following the ideas by [EHJT04], LAR is closely related with the lasso and it provides an efficient
framework for computing the entire lasso path. The general framework of Least Angle Regression is given below

1. Standardize all predictors to have a zero mean and unit variance. Begin with all regression coefficients
at zero i.e. β1 = β2 = · · · = βp = 0. The first residual will be r = y − ȳ, since with all βj = 0 and
standardized predictors the constant coefficient β0 = ȳ

2. Find the predictor xj most correlated with r.

3. Move βj from 0 towards its least-squares coefficient ⟨xj , r⟩, until some other competitor xk has as much
correlation with the current residual as does xj .

4. Move βj and βk in the direction defined by their joint least squares coefficient of the current residual on
(xj ,xk), until some other competitor xl has as much correlation with the current residual.

5. Continue in this way until all p predictors have been entered. After min(N − 1, p) steps, we arrive at the
full least-squares solution.

In particular, at the first step, LAR algorithm finds the variable most correlated with the response. Instead
of fitting this variable completely, LAR moves the coefficient of this variable continuously toward its least
squares value and it will cause its correlation with the evolving residual to decrease in absolute value. This
moving process is stopped when another variable “catches up” in terms of correlation with the residual and this
variable will be put in the active set. After that, their coefficients are moved together in a way that keeps their
correlations tied and decreasing. This process is continued until all the variables are in the model, and ends at
the full least-squares fit. The details for the framework of the LAR algorithm is given in Appendix

2.3.2 LAR: Lasso Modification

The LAR algorithm can be adapted to calculate the Lasso estimator as suggested in [EHJT04], whose framework
is given below.

• If a non-zero coefficient hits zero, drop its variable from the active set of variables and recompute the
current joint least squares direction.

The reason behind what happens in the LAR and LAR lasso modification is given in the proposition below:

Proposition 2.1. Suppose A is the active set of variables at one certain stage in the LAR algorithm, tied in
their absolute inner-product with the current residuals y −Xβ in a sense that

xT
j (y −Xβ) = γ · sj , ∀j ∈ A (8)

where sj ∈ {−1, 1} is the sign of the inner-product, and γ is the common value. At this step, it holds that∣∣xT
k (y −Xβ)

∣∣ ≤ γ, ∀k /∈ A. Now consider the lasso criterion in form of

R(β) =
1

2
∥y −Xβ∥22 + λ∥β∥1 (9)
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Let B be the active set of variables in the solution for a given value of λ. For these variables R(β) is differentiable,
and the stationarity conditions give

xT
j (y −Xβ) = λ · sign (βj) , ∀j ∈ B (10)

Comparing (10) with (8), it can be shown that they are identical only if the sign of βj matches the sign of
the inner product. Therefore, LAR algorithm and lasso start to differ when an active coefficient passes through
zero; condition (10) is violated for that variable, and it is kicked out of the active set B. Lemma A.2 shows
that these equations imply a piecewise-linear coefficient profile as λ decreases. The stationarity conditions for
the non-active variables require that ∣∣xT

k (y −Xβ)
∣∣ ≤ λ,∀k /∈ B (11)

which again agrees with the LAR algorithm.

3 Model Selection Criteria

Model selection refers to the fact that, while we may consider including all available predictors in an n × p
design matrix X to predict the response Y through the linear model

Y = Xβ + ε, with ε ∼ Nn

(
0, σ2In

)
,

it may happen that the model involving a smaller subset of the predictors can fit the data better, in terms of
greater predictive accuracy or better estimation risk. And the submodel is expressed as the following,

Y = X(k)β(k) + ε, with ε ∼ Nn

(
0, σ2In

)
where k is used as an index to identify individual submodels. There are three principal approaches to model
selection in the above context,

• Approach based on unbiased estimation of risk.

• Approach based on estimating the predictive risk.

• Likelihood-based approaches.

Here, two dominant criterion Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC)
are used in our data analysis part. Detailed descriptions are given in the following sections.

3.1 Degrees-of-Freedom Formula for LAR and Lasso

When AIC and BIC are considered, one needs to calculate the degree of freedom of Lasso. One traditional
approach introduced in [Tib96] is to approximate the degree of freedom by

p(t) = tr
{
X

(
XTX+ λW−)−1

XT
}

where W is a diagonal matrix with diagonal elements β̃j , W
− denotes the generalized inverse of W and λ is

chosen so that
∑

|β̂j | = t. However, [Tib96] did not provide the formal definition of the degree of freedom. The
degree of freedom of Lasso is discussed in [ZHT07]. Formally,

Definition 3.1. The degrees of freedom of the fitted vector ŷ = (ŷ1, ŷ2, . . . , ŷN ) are given by

df(ŷ) =
1

σ2

N∑
i=1

Cov (ŷi, yi) (12)

Here Cov (ŷi, yi) refers to the sampling covariance between the predicted value ŷi and its corresponding outcome
value yi.
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The intuition behind the degree of freedom is very straight forward. The harder that we fit to the data, the
larger this covariance and hence df(ŷ). As shown in [EHJT04] and [ZHT07], after the k-th step of the LAR
procedure, the effective degrees of freedom of the fit vector is exactly k. Now for the lasso, the (modified) LAR
procedure often takes more than p steps, since predictors can drop out. Hence the definition is a little different;
for the lasso, at any stage df(ŷ) approximately equals the number of predictors in the model.

[ZHT07] provided a useful bootstrap approach to calculate the degree of freedom following the ideas from
[Ste81]. Given a model fitting method δ, let µ̂ = δ(y) represent its fit. It is assumed that given the x’s, y is
generated according to y ∼

(
µ, σ2I

)
, where µ is the true mean vector and σ2 is the common variance. Then

the degrees of freedom of δ is

df(µ̂) =

n∑
i=1

cov (µ̂i, yi) /σ
2 (13)

Suppose that y is used to fit an ordinary least square model. We compute the OLS estimates β̂ols and σ̂2
ols .

Then we consider a synthetic model,
y∗ = Xβ +N(0, 1)σ (14)

where β = β̂ols and σ = σ̂ols . Given the synthetic model (14), the degrees of freedom of the lasso can be
numerically evaluated by Monte Carlo methods.

• For b = 1, 2, . . . , B, we independently simulate y∗(b) from (14).

• Compute

ĉovi =

∑B
b=1 (µ̂i(b)− ai) (y

∗
i (b)− (Xβ)i)

B

• Finally, df =
∑n

i=1 ĉovi/σ
2. Typically ai = 0 is used in Monte Carlo calculation. In this work we use

ai = (Xβ)i, for it gives a Monte Carlo estimate for df with smaller variance than that given by ai = 0.

3.1.1 Efron’s Conjecture.

In [EHJT04], Efron first considered deriving the analytical form of the degrees of freedom of the lasso. In
particular, following conjecture on the degrees of freedom of the lasso is presented

Conjecture 3.1. Starting at step 0, let mlast
k be the index of the last LARS-lasso sequence containing exactly

k nonzero predictors. Then df
(
µ̂mlast

k

)
= k.

In general, [ZHT07] argues that the conjecture is true under the so-called “positive cone condition”. Without
the positive cone condition the conjecture can be wrong, although k is a good approximation of degree of freedom.
In particular, [ZHT07] shows that conjecture works appropriately from the model selection perspective. If we
use the conjecture to construct AIC (or BIC) to select the lasso fit, then the selected model is identical to that
selected by AIC (or BIC) using the exact degrees of freedom results.

3.2 AIC

AIC [Boz87] is derived from the perspective of Kullback-Leibler (KL) divergence. The KL divergence (KLf (k))

of fk

(
· | θ̂k

)
with respect to f(·) can be expressed as

KLf (k) = Ef (log f(Y))− Ef

(
log fk

(
Y | θ̂k

))
(15)

And the goal of AIC is to minimize the KLf (k) between the true model and submodels. Under certain
assumptions that

• For every k, there is a unique parameter value θ0
k such that −Ef (log fk (Y | θk)) is minimized over the

parameter space Θk at θ0
k;

7
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• The density f(·) can be approximated by the density fk
(
· | θ0

k

)
.

The final form of AIC can be expressed as

AIC(k) = n log σ̂2
k + 2pk (16)

where pk is the degree of freedom of the submodel. Notice that, in this expression, the first term is simply

−2 log fk

(
Y | θ̂k

))
+n−n log(2π). Ignoring the constant term, −2 log fk

(
Y | θ̂k

))
+2pk is being used as an

estimator of −2Ef

(
log fk

(
Y | θ̂k

))
. Justification of this estimator as a good (meaning, consistent) estimator

can be given through the large-sample theory of maximum likelihood estimators.

3.3 BIC

BIC [Sch78] is formulated from the Bayesian perspective. K is defined to be the random variable that takes
value over the space of model indexed. And the Bayesian frame for BIC is given as,

• Let πk denote the prior probability of the event K = k.

• Given K = k, let gk(·) denote the prior density of the parameter θk, now treated as a random vector.

• Assume that the πk ’s are essentially equal (uniform prior on the model space), and gk (θk) is constant on
Θk (i.e., prior for θk is ”flat” or ”noninformative”).

• Using Bayes’ Theorem, the marginal posterior probability of submodel k, given observed data Y = y is
equal to

P(K = k | Y = y) =
πk

m(y)

∫
Θk

gk (θk) fk (y | θk) dθk (17)

for a function m(y) such that
∑

k P(K = k | y) = 1 for all y, where the sum is taken over all possible
values of k.

Then by the Laplace approximation method for integrals and ignore the contant term, −2 logP(K = k |
Y = y) can be estimated by

− 2 log

∫
Θk

fk (Y | θk) dθk ≈ −2 log fk

(
Y | θ̂k

)
+ (log n)pk (18)

Excluding additive terms not depending on k in the right hand side of the last display, BIC can be expressed
as

BIC(k) = n log σ̂2
k + (log n)pk (19)

3.4 Selecting λ by Cross Validation

For changing λ the number of variables with coefficients different from 0 changes. Which of the model should we
choose. One could make the decision based on AIC or BIC. Another possibility is to apply Cross Validation
for making this choice.

For Cross Validation the sample is split into K folds, F1, . . . , Fk, of equal size (or as close as possible). Then
the model is fit K times: each time omitting one of the folds (let’s say i) for estimating the model parameters.

The outcome of this estimation is then cross validated by comparing the actual measurements with their
prediction for all data in the omitted fold k:

ei(λ) =
∑
j∈Fi

(yj − ŷj(λ))
2

The CV error (also called the cross validation MSE) is the error averaged over the K folds.

CV (λ) =
1

n

K∑
i=1

ei(λ)

8
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When K = n we call this the leave-one-out cross validation. More common choice for K are five or ten.
A plot of the cross-validation error against λ usually shows first a decrease in CV (λ) and then an increase.

Choose λ such that the cross validation error is smallest.

λ̂ = argmin
λ

CV (λ)

Experimenters have found this choice very conservative not eliminating ”sufficiently many” predictors from the
model.

4 Data Analysis

4.1 Coefficients Analysis

In this part, we will give 5 plots of estimated coefficients according to the algorithms described above (LASSO
in ’lars’ package, LARS in ’lars’ package, Stagewise in ’lars’ package, our LASSO and our Adaptive LASSO).
In figures, x axis is defined as the fraction of L1 norm of estimated coefficients divided by the maximum of all
L1 norm. y axis represents estimated coefficients.

Figure 2: Coefficients Analysis

4.2 Variable Selection

In this part, we apply 3 different criteria (AIC, BIC, CP ) to each algorithm to implement variable selection. In
figures, we start from a large value of lambda and then decreases it to see the change of the active variables.
The x-axis indicates each step that there is a change of active variables. In the last step, lambda will become
zero, all variables are active, and the coefficients will become the same as that from OLS.
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Figure 3: Variable Selection Analysis10



4.3 Find the Best Model Based on MSE

In each model, we can compare the performance of our criteria based on MSE. MSE is 1
nΣ

n
i=1(yi − ŷi)

2, where
yi is an observed data and ŷi is a predicted value from a combination of the model and the variable selection
criteria.

Table 1: Model and its MSE Result

Model Lasso LARS Stagewise Our Lasso Our Adaptive Lasso

Best Criteria AIC, BIC, Cp AIC,BIC, Cp AIC, BIC, Cp AIC, Cp AIC, BIC, Cp

MSE 2961.39 2961.39 2995.752 2866.939 2873.114

In lars-Lasso, lars-LARS, lars-Stagewise and our adaptive lasso algorithms, selected variables from three
criteria (Cp, AIC, BIC) are exactly same. But selected model from our Lasso algorithm based on AIC criteria
has the minimum MSE.

Therefore, our final model from our LASSO algorithm is

Y = −10.59×Sex+25.22×BMI+15.00×BP−20.88×S1+7.94×S2+9.00×S4+29.06×S5+2.98×S6 (20)

5 Conclusion

In this paper, we introduce famous shrinkage methods and various model selection criteria. We analyze the
diabetes data by using these algorithms. We showed that the model from Lasso regression along the path by
AIC has the lowest MSE value.
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A Technical Details of the [Tib96] and [EHJT04]

A.1 Lasso in Orthonormal Design Case and the Influence of Multicollinearity on Lasso

When the predictors are orthonormal XTX = I and the ordinary least squared estimate of β is given by

β̂ = XTy (21)

Since the columns of X are orthonormal we can construct a basis for RN by using the first p columns of X
and then extending these with N − p linearly independent additional orthonormal vectors. The Gram-Schmidt
procedure guarantees that we can do this. Thus in this extended basis we can write y as

y =

p∑
j=1

β̂jxj +
N∑

j=p+1

γjx̃j (22)

Where β̂j equal the components of β̂ in Equation (21), ˜x̃j are the extended basis vectors required to span RN ,
and γj are the coefficients of y with respect to these extended basis vectors.

For the lasso regression procedure we pick the values of βj to minimize

FLasso(β) = (y −Xβ)T (y −Xβ) + λ

p∑
j=1

|βj |

Expanding ŷ as ŷ =
∑p

j=1 βjxj and with y expressed again as in Equation (22) we have that RSS(β) in this
case becomes

FLasso(β) = ||
p∑

j=1

(β̂j − βj)xj +

N∑
j=p+1

γjx̃j ||2 + λ

p∑
j=1

|βj |

=

p∑
j=1

(β̂j − βj)
2 +

N∑
j=p+1

γ2j + λ

p∑
j=1

|βj |

=

p∑
j=1

{
(β̂j − βj)

2 + λ|βj |
}
+

N∑
j=p+1

γ2j

(23)

We can minimize this expression for each value of βj for 1 ⩽ j ⩽ p independently. Thus our vector problem
becomes that of solving p scalar minimization problems all of which look like

β∗ = argmin
β

{
(β̂ − β)2 + λ|β|

}
(24)

In this expression β̂ and λ are assumed fixed. This expression can be represented as the sum of two terms
(β̂ − β)2 and λ|β|. The first expression (β̂ − β)2 is symmetric about the least squares estimate β̂ while the
second expression is symmetric about β = 0.

Then the objective function F (β) in Equation (24) we want to minimize is

F (β) =

{
(β − β̂)2 − λβ β < 0

(β − β̂)2 + λβ β > 0
(25)

To find the minimum of this function take the derivative with respect to β and set the result equal to zero and
solve for β. We find the derivative of F (β) given by

F ′(β) =

{
2(β − β̂)− λ β < 0

2(β − β̂) + λ β > 0
(26)

When we set F ′(β) equal to zero we get two possible solutions for β given by

β = +
λ

2
+ β̂ β < 0

β = −λ

2
+ β̂ β > 0

(27)
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If we use the notation β̂lasso
j and β̂OLS

j , we have

β̂lasso
j = +

λ

2
+ β̂OLS

j β̂lasso
j < 0

β̂lasso
j = −λ

2
+ β̂OLS

j β̂lasso
j > 0

(28)

By using the notation sign that denotes the signature, x+ denotes the positive part of x and letting γ = λ
2 , we

will find (28) can be written as

sign(β̂OLS
j )(|β̂OLS

j | − γ)+ (29)

by comparing the graph of these two functions.

Finally, we consider the influence of collinearity on the regression coefficients on ridge regression and
lasso.Suppose for a given t in (1), the fitted lasso coefficient for variable Xj is β̂j = a. Suppose we augment our
set of variables with an identical copy

X∗
j = Xj

Now we characterize the effect of this exact collinearity by describing the set of solutions for β̂j and β̂∗
j , using

the same value of t.

Let Xj be the feature that we dupilicate and let X−j denote all other features except Xj . Let βj denote the
coefficient of Xj in the original Lasso problem, and let β−j denote all the other coefficients. Then the original
Lasso problem be written as the following optimization problem:

β̂ =argminβ ∥Y −X−jβ−j −Xjβj∥22
s.t. ∥β−j∥1 + |βj | ≤ t

Let X∗
j denote the duplicated feature and let β̃j and β∗

j denote the coefficients of the original feature Xj and

the duplicated feature X∗
j in the new Lasso problem. Let β̃−j denote the coefficients of other feature vectors in

the new Lasso problem. Then the updated Lasso problem can be written as:

β̂ =argminβ

∥∥∥Y −X−j β̃−j −Xj β̃j −X∗
j β

∗
j

∥∥∥2
2

s.t.
∥∥∥β̃−j

∥∥∥
1
+
∣∣∣β̃j∣∣∣+ ∣∣β∗

j

∣∣ ≤ t

Now say for a particular solution to the updated Lasso problem, our coefficients are: β̃−j , β̃j and β∗
j . Now if

we choose β−j = β̃−j , and βj = β̃j + β∗
j , then I claim this set of β−j and βj is also a solution to the original

Lasso problem. Using Triangle Inequality (i.e. |a+ b| ≤ |a|+ |b|) we get:∥∥∥β̃−j

∥∥∥
1
+
∣∣∣β̃j∣∣∣+ ∣∣β∗

j

∣∣ ≤ t

=⇒
∥∥∥β̃−j

∥∥∥
1
+
∣∣∣β̃j + β∗

j

∣∣∣ ≤ t

But we already know that for the given value of t, the optimal coefficient of Xj for the original Lasso problem
is βj = a. Therefore, this new coefficient β̃j + β∗

j also has to equal a. Further, we also know that the absolute
value of each individual coefficient can never exceed t. Therefore we conclude the solution set for coefficients of
Xj and X∗

j is characterized by the following line segment:

β̃j + β∗
j = a

subject to
∣∣∣β̃j∣∣∣ ≤ t,

∣∣β∗
j

∣∣ ≤ t
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A.2 Details and Technical Lemmas for LAR

Formally, suppose Ak is the active set of variables at the beginning of the k-th step and βAk
be the coefficient

vector for these variables at this step, then the current residual is given by

rk = y −XAk
βAk

and the direction for this step is
δk = (XT

Ak
XAk

)−1XT
Ak

rk (30)

The coefficient profile then evolves as
βAk

(α) = βAk
+ α · δk

the directions chosen in this fashion keep the correlations tied and decreasing. If the fit vector at the beginning
of this step is f̂k, then it evolves as

f̂k(α) = f̂k + α · uk

where uk = XAk
δk is the new fit direction.

Lemma A.1 (LAR directions). Using the notation around equation (30), the LAR direction makes an equal
angle with each of the predictors in Ak.

Proof. From the definition of the LAR direction vector uk, we see that

XT
Ak

uk = XT
Ak

XAk
δk

= XT
Ak

XAk
(XT

Ak
XAk

)−1XT
Ak

rk

= XT
Ak

rk

(31)

Since the cosign of the angle of uk with each predictor xj in Ak is given by

xT
j uk

||xj || · ||uk||
=

xT
j uk

||uk||

each element of the vector XT
Ak

uk corresponds to a cosign of an angle between a predictor xj and the vector

uk. Since the procedure for LAR adds the predictor xj′ exactly when the absolute value of xT
j′r equals that of

xT
j r for all predictors xj in Ak, the direction uk makes an equal angle with all predictors in Ak.

To derive a better connection between LAR Algorithm (a few steps of Least Angle Regression) and the
notation on the general LAR step k that is presented in this section that follows LAR algorithm. It is helpful
to perform the first few steps of this algorithm by hand and explicitly writing out what each variable was. In
this way we can move from the specific notation to the more general expression.

• Standardize all predictors to have a zero mean and unit variance. Begin with all regression coefficients
at zero i.e. β1 = β2 = · · · = βp = 0. The first residual will be r = y − ȳ, since with all βj = 0 and
standardized predictors the constant coefficient β0 = ȳ

• Set k = 1 and begin start the k-th step. Since all values of βj are zero, the first residual is r1 = y − ȳ.
Find the predictor xj that is most correlated with this residual r1. Then as we begin this k = 1 step we
have the active step given by A1 = {xj} and the active coefficients given by βA1 = [0].

• Move βj from its initial value of 0 and in the direction

δ1 = (XT
A1

XA1)
−1XT

A1
r1 =

xT
j r1

xT
j xj

= xT
j r1

Note that the term xT
j xj in the denominator is not present since xT

j xj = 1 as all variables are normalized
to have unit variance. The path taken by the elements in βA1 can be parametrized by

βA1(α) = βA1 + αδ1 = 0 + αxT
j r1 = (xT

j r1)α for 0 ⩽ α ⩽ 1
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This path of the coefficients βA1(α) will produce a path of fitted values given by

f̂1(α) = XA1βA1(α) = (xT
j r1)αxj

and a residual of
r(α) = y − ȳ − α(xT

j r1)xj = r1 − α(xT
j r1)xj

Now at this point xj itself has a correlation with this residual as α varies given by

xT
j (r1 − α(xT

j r1)xj) = xT
j r1 − α(xT

j r1) = (1− α)xT
j r1

When α = 0 this is the maximum value of xT
j r1 and when α = 1 this is the value 0. All other features

(like xk) have a correlation with this residual given by

xT
k (r1 − α(xT

j r1)xj) = xT
k r1 − α(xT

j r1)x
T
k xj

Starting at the beginning of the k-th step of the LAR algorithm, derive expressions to identify the next variable
to enter the active set at step k + 1, and the value of α at which this occurs

Lemma A.2. Consider a regression problem with all variables and response having mean zero and standard
deviation one. Suppose also that each variable has identical absolute correlation with the response:

1

N
|⟨xj ,y⟩| = λ j = 1, . . . , p

Let β̂ be the least-squares coefficient of y on X, and let u(α) = αXβ̂ for α ∈ [0, 1] be the vector that moves a
fraction α toward the least squares fit u. Let RSS be the residual sum-of-squares from the full least squares fit

• (a): we have
1

N
|⟨xj ,y − u(α)⟩| = (1− α)λ, j = 1, . . . , p

and hence the correlations of each xj with the residuals remain equal in magnitude as we progress toward
u.

• (b): These correlations are all equal to

λ(α) =
(1− α)√

(1− α)2 + α(2−α)
N ·RSS

and hence they decrease monotonically to zero.

Proof. Now in the expression 1
N |⟨xj ,y−u(α)⟩|, the function u(α) is a ”scaled least squares solution” and takes

the form u(α) = αXβ̂ where β̂ is given by the least squares solution.

• (a): Because of this 1
N |⟨xj ,y − u(α)⟩| is the absolute value of the j-th component of

1

N
XT (y − u(α)) =

1

N
XT (y − αX(XTX)−1XTy)

=
1

N
(XTy − αXTy)

=
1

N
(1− α)XTy

(32)

Since in this problem we are told that the absolute value of each element of XTy is equal to Nλ we have
from the above that 1

N |XT (y − u(α))| = (1− α)λ, or looking at the j-th row and taking absolute values
of this expression we conclude that

1

N
|⟨xj ,y − u(α)⟩| = (1− α)λ (33)

for j = 1, 2, . . . , p as we were to show. In words, the magnitude of the projections of xj onto the residual

y − u(α) = y − αXβ̂ is the same for every value of j.
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• (b): The correlations (not covariances) would be given by

⟨xj ,y−u(α)⟩
N(

⟨xj ,xj⟩
N

) 1
2
(
⟨y−u(α),y−u(α)⟩

N

) 1
2

=
(1− α)λ(

⟨y−u(α),y−u(α)⟩
N

) 1
2

using the result from (a).
We next need to evaluate the expression ⟨y − u(α),y − u(α)⟩ in the denominator above. As a first step
we have

⟨y − αXβ̂,y − αXβ̂⟩ = yTy − αyTXβ̂ − αβ̂TXTy + α2β̂T (XTXβ̂)

Now recall the normal equations for linear regression

XT (y −Xβ̂) = 0 or XTXβ̂ = XTy

Using this we can write

⟨y − αXβ̂,y − αXβ̂⟩ = yTy − 2αyTXβ̂ + α2yTXβ̂

= yTy + α(α− 2)yTXβ̂
(34)

If α = 1 the left-hand-side is the RSS. This means that

RSS = yTy − yTXβ̂

So
yTXβ̂ = yTy −RSS

Using this we have that

⟨y − αXβ̂,y − αXβ̂⟩ = yTy + α(α− 2)yTXβ̂

= yTy + α(α− 2)(yTy −RSS)

= (1− α)2yTy + α(2− α)RSS

(35)

As y has a mean zero and a standard deviation of one means that 1
N yTy = 1 so the above becomes

1

N
⟨y − αXβ̂,y − αXβ̂⟩ = (1− α)2 +

α(α− 2)

N
RSS

Putting this expression into the above gives the desired expression.
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Supplementary – R code

library(lars)

library(ggplot2)

mydiag = function(a){

if(length(a) == 1){

return(matrix(a, 1, 1))

}else{

return(diag(a))

}

}

aic_bic <- function(sum.fit, fit.name, n, plot_it = TRUE){

p <- sum.fit$Df

l <- nrow(sum.fit)

aic <- n * log(sum.fit$Rss/n) + 2 * p

bic <- n * log(sum.fit$Rss/n) + log(n) * p

sum.fit <- cbind(sum.fit, aic , bic)

best_idx <- t(as.matrix(apply(sum.fit[, 3:5], 2, which.min)))

best_step <- t(as.matrix(sum.fit$Df[best_idx]))

colnames(best_step) <- c("Cp", "aic", "bic")

colnames(best_idx) <- c("Cp", "aic", "bic")

if(plot_it){

for (i in colnames(best_step)){

png(file = paste(i, "_", fit.name, ".png", sep = ""),

width = 3.25, height = 3.25, units = "in", res = 500)

plot(4:(l-1), sum.fit[-(1:4), i], type = 'b', xlab = 'step', ylab = i,

main = fit.name, ylim = c(min(sum.fit[-(1:4), i])-5, max(sum.fit[-(1:4), i]) + 5))

points((best_idx[, i]-1), sum.fit[best_idx[, i], i], col = "red")

dev.off()

}

}
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return(list("sum.fit" = sum.fit, "opt.model" = best_step, "idx" = best_idx))

}

my_LH_algo = function(X, Y, GE, t_now, rescale, gamma_OLS){

# minimize ||Y - X\beta|^2 where G\beta \geq tnow

converge = FALSE

p = ncol(X)

Eset = sum((GE == 1) * 2^(0:(p - 1)))

GE_new = GE %*% rescale

while(!converge){

svd_GE = svd(GE_new)

gamma_now = gamma_OLS +

svd_GE$v %*% mydiag(1/svd_GE$d) %*% t(svd_GE$u) %*% (t_now - GE_new %*% gamma_OLS)

beta_now = rescale %*% gamma_now

if(sum(abs(beta_now)) > t_now * (1 + 1e-8)){

delta_now = matrix(sign(beta_now), nrow = 1)

index_i = sum((delta_now == 1) * 2^(0:(p - 1)))

if(!(index_i %in% Eset)){

Eset = c(Eset, index_i)

GE_new = rbind(GE_new, delta_now %*% rescale)

GE = rbind(GE, delta_now)

}else{break}

}else{

converge = TRUE

}

}

return(list(beta = beta_now, GE = GE, converge = converge))

}

aic_bic_mylasso_object = function(myfit, fit.name, main){

p = max(myfit$RSS$Df)

range = 5:(p + 1)

AIC = myfit$n * log(myfit$RSS$Rss/myfit$n) + 2 * myfit$RSS$Df

png(file = paste("aic_", fit.name, ".png", sep = ""),

width = 3.25, height = 3.25, units = "in", res = 500)

plot(myfit$RSS$Df[range], AIC[range], main = main, xlab = "df", ylab = "AIC", type = "b")

points(myfit$RSS$Df[which.min(AIC)], AIC[which.min(AIC)], col = "red")

dev.off()

png(file = paste("bic_", fit.name, ".png", sep = ""),

width = 3.25, height = 3.25, units = "in", res = 500)

BIC = myfit$n * log(myfit$RSS$Rss/myfit$n) + log(myfit$n) * myfit$RSS$Df

plot(myfit$RSS$Df[range], BIC[range], main = main, xlab = "df", ylab = "BIC", type = "b")

points(myfit$RSS$Df[which.min(BIC)], BIC[which.min(BIC)], col = "red")

dev.off()

png(file = paste("Cp_", fit.name, ".png", sep = ""),

width = 3.25, height = 3.25, units = "in", res = 500)

CP = myfit$RSS$Rss/myfit$RSS$Rss[p + 1]*myfit$n - myfit$n + 2 * (myfit$RSS$Df + 1)

plot(myfit$RSS$Df[range], CP[range], main = main, xlab = "df", ylab = "CP", type = "b")

points(myfit$RSS$Df[which.min(CP)], CP[which.min(CP)], col = "red")
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dev.off()

}

mylasso = function(X, Y, num_t){

n = nrow(X)

p = ncol(X)

beta_OLS = summary(lm(Y ~ -1 + X))$coef[, 1]

beta_threshold = 1e-8

L1norm = pracma::linspace(sum(abs(beta_OLS)), beta_threshold, num_t) * (1 + 1e-10)

# solve for beta under each t

eigen_Sigma = eigen(cov(X))

rescale = eigen_Sigma$vectors %*% diag(1/sqrt(eigen_Sigma[[1]])) %*% t(eigen_Sigma$vectors)

Xnew = X %*% rescale

Xnew_XTX_inv = diag(rep(1/(n - 1), p)) #solve(crossprod(Xnew))

gamma_OLS = summary(lm(Y ~ -1 + Xnew))$coef[, 1]

beta_mat = matrix(0, p, num_t)

sigma_sq = rep(0, num_t)

GE = matrix(sign(beta_OLS), nrow = 1)

for(i in 1:num_t){

t_now = L1norm[i]

# optimize for beta_hat

LH_result = my_LH_algo(X, Y, GE, t_now, rescale, gamma_OLS)

beta_mat[, i] = LH_result$beta * (abs(LH_result$beta) > beta_threshold)

sigma_sq[i] = sum((Y - X%*%beta_mat[, i])^2)/n

if(!LH_result$converge){

beta_mat[, i] = 0

break

}

}

if(i < num_t){sigma_sq[i:num_t] = sigma_sq[i - 1]}

pk = colSums(beta_mat!=0)

RSS = data.frame(Df = 0:10, Rss = c(sum(Y^2), rep(NA, p)))

beta_pick = data.frame(matrix(0, p + 1, p + 1))

colnames(beta_pick)[1] = "Df"

colnames(beta_pick)[2:(p + 1)] = colnames(X)

beta_pick[, 1] = 0:10

for(i in 1:p){

RSS$Rss[i + 1] = min(sigma_sq[pk == i]) * n

beta_pick[i + 1, 2:(p+1)] = beta_mat[, which(sigma_sq == min(sigma_sq[pk == i]))]

}

RSS$AIC = n * log(RSS$Rss/n) + 2 * RSS$Df

RSS$BIC = n * log(RSS$Rss/n) + log(n) * RSS$Df

RSS$CP = RSS$Rss/RSS$Rss[p + 1]*n - n + 2 * (RSS$Df + 1)

best_model = list(AIC = NULL, BIC = NULL, CP = NULL)

best_model$AIC = list(MSE = RSS$Rss[which.min(RSS$AIC)]/n,

model = beta_pick[which.min(RSS$AIC), 2:(p + 1)])

best_model$BIC = list(MSE = RSS$Rss[which.min(RSS$BIC)]/n,
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model = beta_pick[which.min(RSS$BIC), 2:(p + 1)])

best_model$CP = list(MSE = RSS$Rss[which.min(RSS$CP)]/n,

model = beta_pick[which.min(RSS$CP), 2:(p + 1)])

all_mse = matrix(c(best_model$AIC$MSE, best_model$BIC$MSE, best_model$CP$MSE), 1)

colnames(all_mse) = c("aic", "bic", "cp")

criteria = c("AIC", "BIC", "CP")[all_mse == min(all_mse)]

model = best_model[[which(all_mse == min(all_mse))[1]]]$model

mse = best_model[[which(all_mse == min(all_mse))[1]]]$MSE

beta_raw = data.frame(cbind(L1norm, pk, t(beta_mat)))

colnames(beta_raw) = c("L1norm", colnames(beta_pick))

result = list(mse = mse, model = model, criteria = criteria, mse.all = all_mse,

best_model = best_model, RSS = RSS, beta = beta_pick, beta_raw = beta_raw, n = n)

return(result)

}

myada_lasso = function(X, Y, num_t){

beta_OLS = summary(lm(Y ~ -1 + X))$coef[, 1]

X_ada = scale(X, scale = 1/abs(beta_OLS))

return(mylasso(X_ada, Y, num_t = num_t))

}

plot_mylasso_object = function(myfit, xvar = "beta", main){

if(xvar == "L1norm"){

ncol = ncol(myfit$beta_raw)

plot(myfit$beta_raw$L1norm, myfit$beta_raw[, 3], type = 'l',

ylim = c(min(myfit$beta_raw[, 3:ncol]), max(myfit$beta_raw[, 3:ncol])),

col = 1, xlab = "L1norm", ylab = "Coefficients", main = main)

for(j in 4:ncol){

lines(myfit$beta_raw$L1norm, myfit$beta_raw[, j], col = j - 2)

}

}

if(xvar == "beta"){

ncol = ncol(myfit$beta)

beta_pick = myfit$beta[, 2:ncol]

x_axis = apply(beta_pick, 1, function(X) sum(abs(X)))

x_axis = x_axis/max(x_axis)

plot(x_axis, beta_pick[, 1], type = 'l', ylim = c(min(beta_pick), max(beta_pick)), col = 1,

xlab = "|beta|/max|beta|", ylab = "Standardized Coefficients", main = main)

for(j in 2:10){

lines(x_axis, beta_pick[, j], col = j)

# abline(v = x_axis[j])

}

}

}

min.mse <- function(fit, sum.fit){

pred <- predict(fit, X, s=c(sum.fit$opt.model), type = 'fit')$fit

mse <- t(as.matrix(colMeans((Y - pred)^2)))

tag <- c("Cp", "aic", "bic")

colnames(mse) <- tag

criteria <- tag[which.min(mse)]

return(list("pred" = pred, "mse" = min(mse), "model" = coef(fit)[sum.fit$idx[, criteria],],

"criteria" = criteria, "mse.all" = mse))

}
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final_project_models = function(X, Y, num_t = 2e3){

# initialization

n = length(Y)

p = ncol(X)

fit.lasso <- lars(X, Y, intercept = F, normalize = F)

fit.lar <- lars(X, Y, type="lar", intercept = F, normalize = F)

fit.for <- lars(X, Y, type="for", intercept = F, normalize = F)

sum.fit.lasso <- aic_bic(summary(fit.lasso), "lasso", n = n, plot_it = FALSE)

sum.fit.lar <- aic_bic(summary(fit.lar), "lar", n = n, plot_it = FALSE)

sum.fit.for <- aic_bic(summary(fit.for), "stagwise", n = n, plot_it = FALSE)

min.lasso <- min.mse(fit.lasso, sum.fit.lasso)

min.lar <- min.mse(fit.lar, sum.fit.lar)

min.for <- min.mse(fit.for, sum.fit.for)

min.our_lasso = mylasso(X, Y, num_t = num_t)

min.ada_lasso = myada_lasso(X, Y, num_t = num_t)

png(file = "coeff_plot_LASSO.png", width = 3.25, height = 3.25, units = "in", res = 500)

plot(fit.lasso)

dev.off()

png(file = "coeff_plot_lar.png", width = 3.25, height = 3.25, units = "in", res = 500)

plot(fit.lar)

dev.off()

png(file = "coeff_plot_for.png", width = 3.25, height = 3.25, units = "in", res = 500)

plot(fit.for)

dev.off()

png(file = "coeff_plot_our_LASSO.png", width = 3.25, height = 3.25, units = "in", res = 500)

plot_mylasso_object(min.our_lasso, xvar = "beta", main = "Our LASSO")

dev.off()

png(file = "coeff_plot_ada_LASSO.png", width = 3.25, height = 3.25, units = "in", res = 500)

plot_mylasso_object(min.ada_lasso, xvar = "beta", main = "Our adaptive LASSO")

dev.off()

sum.fit.lasso <- aic_bic(summary(fit.lasso), "lasso", n = n)

sum.fit.lar <- aic_bic(summary(fit.lar), "lar", n = n)

sum.fit.for <- aic_bic(summary(fit.for), "stagwise", n = n)

aic_bic_mylasso_object(min.our_lasso, fit.name = "our_lasso", main = "Our lasso")

aic_bic_mylasso_object(min.ada_lasso, fit.name = "our_ada_lasso", main = "Our adaptive lasso")

result = list(min.our_lasso = min.our_lasso, min.ada_lasso = min.ada_lasso,

min.lasso = min.lasso, min.lar = min.lar, min.for = min.for)

return(result)

}

## main code starts here

diabetes = read.csv("diabetes_data.csv", header = TRUE)

p = ncol(diabetes) - 1

X = scale(diabetes[, 1:p])

Y = scale(diabetes[, p + 1], scale = FALSE)
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# setwd("/Users/eric/Desktop/UCD/STA232B/final_project")

result = final_project_models(X, Y)

print(paste0("Figures are saved in ", getwd(), sep = ""))

NOT_RUN = TRUE

if(NOT_RUN){

## model 1: lasso from lars

result$min.lasso$mse

result$min.lasso$model

result$min.lasso$criteria

result$min.lasso$mse.all

## model 2: lar from lars

result$min.lar$mse

result$min.lar$model

result$min.lar$criteria

result$min.lar$mse.all

## model 3: forward stagewise from lars

result$min.for$mse

result$min.for$model

result$min.for$criteria

result$min.for$mse.all

## model 4: our lasso

result$min.our_lasso$mse

result$min.our_lasso$model

result$min.our_lasso$criteria

result$min.our_lasso$mse.all

## model 5: our adaptive lasso

result$min.ada_lasso$mse

result$min.ada_lasso$model

result$min.ada_lasso$criteria

result$min.ada_lasso$mse.all

}
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