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1 Linear Mixture Model

In this project, we demonstrate the liner mixture model (LLM) using a dataset of birth weights of
lambs from Harville and Fenech (1985). The observations y consist of birth weight of n = 62 lambs
from 23 rams with the ages of dam and the five distinct population lines together being recorded as
covariates. The age of the dam is a categorical variable with three categories numbered 1 (1-2 years),
2 (2-3 years), and 3 (over 3 years). Let x;;,s = 1 if the age of the kth dam corresponding to line 4
and sire j is in category s, and x;;5,s = 0 otherwise. Another fixed effects are the line effects, denoted

by wi, ¢ =1,...,5. In the model, we consider the sire effects as random effects, denoted by o;;’s for
i=1,...,5, 7 =1,...,n; with ny = ny = ng =4, ny = 3, and n; = 8, where o w N(0,02).
Finally, we denote the error terms as €;;;’s, ¢ = 1,...,5, j = 1,...,n4, and & = 1,...,n,;, where

€ijk i N(0,02), and n;; is the number of measures in the (i,j) cell. In the meanwhile, we assume

a;;’s and €;;;’s are mutually independent.
Under the previous assumptions, we consider the model, y;;r = i + a1Tij5,1 + a2Ti5k,2 + 5 + €55k-
In general, we have
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where o ~ Na3(0,02I23) and € ~ Ng2(0,02Ig2) are mutually independent. Lately, we denote the pa-
rameters of the components of the marginal covariance matrix as § = (02, 02)?, and the parameter of
interests in this model as 1 = (,60")%. In the next section, we presented our analysis of 1) using max-
imum likelihood estimation (MLE) methods and restricted maximum likelihood estimation (RMLE)

methods.

2 Analysis

2.1 Maximum Likelihood Estimation

We implemented the model using package 1m4 in R. After doing the analysis of MLE, we estimated the
coefficients 3 in Table 1. We also obtained the estimates 62 = 0, and 62 = 2.971 from our analysis.
To further investigate 6, we presented two fashions to analyze the dispersion of our estimate 6.

1. The asymptotic covariance matrix (p. 11 of Jiang 2007);

Let ¢ be the log-likelihood of 3. The marginal variance of y in our model is V = o2y +

02ZZ'. By the theorem of MLE, we derived the asymptotic covariance matrix, Var(f) =
*[(V@T(af/aip)il]&g,&g, where
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Estimate Std. Error t value

Linel 10.72010 0.65981 16.247
Line2 12.31608 0.63314 19.452
Line3 10.89224 0.48753 22.342
Line4 10.21310 0.62860 16.247
Line5 10.97742 0.46298 23.710
Agel -0.02184 0.52187 -0.042
Age2 -0.08499 0.62123 -0.137

Table 1: MLE of g

Let @a(é) be the asymptotic covariance matrix of 6. Based on the expression, our implement
showed that
= 0.088 —0.088
Vara(0) = [0.088 0.372 ] '

The standard errors of 62 and 62 from the asymptotic covariance matrix are 0.297 and 0.610,
respectively.

2. The bootstrap method with B = 100 being the number of bootstrap samples.

Let @“b(é) be the bootstrapped covariance matrix of . For the reproducible purpose, we
predetermined the random seed being seed = 2022. Using the parametric bootstrap method,
we obtained

— ~ [0.006 —0.000
Vary(0) = {—0.000 0.274 } '

The standard errors of 62 and 62 from the bootstrap method are 0.077 and 0.524, respectively.

2.2 Restricted Maximum Likelihood Estimation

Analogously, we conducted our analysis through 1m4. The estimates f are indicated in Table 2. We
also obtained the estimates of 6, 52 = 0.511 and 62 = 2.995. To complete our investigation of 0, we
performed the two methods again with a slight modification.

Estimate std. Error t value
Linel 10.500799 0.807022 13.012
Line2 12.299933 .756868 16.251
Line3 11.042510 .656169 16.829
Line4 10.286381 .788240 13.050
Line5 10.962486 .543773 20.160
Agel -0.009646 .548103 -0.018
Age2 -0.165080 .643456 -0.257
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Table 2: RMLE of 8

1. The asymptotic covariance matrix;
With a modification by replacing V=1 in Var(9¢/90) by P, where

P=V!1-VIX(X'V X)XV,

we obtained

— = [0449 —0.183
Vara(6) = [—0.183 0.456 ] '

The standard errors of 52 and G2 from the asymptotic covariance matrix are 0.670 and 0.675,
respectively.



2. The bootstrap method with B = 100.

Again, for the reproducible purpose, we predetermined the random seed being seed = 2022.
The bootstrapped results suggested

— = [0549 —0.036
Vary(9) = {—0.036 0.345 } '

The standard errors of 52 and &2 from the bootstrap method are 0.741 and 0.587, respectively.

3 Discussion

We found out that the estimates of 3 and o2 are pretty similar no matter we used MLE or RMLE.
However, the estimate of o2 is significantly different. The results from MLE suggested that a should
degenerate to a point mass rather than be normally distributed. This meant there is no random effect
from the sire effect to the weight of lambs. By contrast, the results from RMLE allowed the presence
of the random effects in the model.

Another departure in our analyzes is their asymptotic behavior. The bootstrapped covariance
matrix in MLE did not seem to converge to the asymptotic covariance matrix in MLE, whereas the
bootstrapped covariance matrix in RMLE was closed to the asymptotic covariance matrix in RMLE.
In fact, the RMLE remained consistent and asymptotically normal, while the MLE may fail to be
consistent or asymptotically normal (Jiang, 1996). The huge difference between the standard errors
of 02 from asymptotic covariance matrix and the bootstrapped method suggested that 0 failed to be
asymptotically normally distributed in the weight of lambs dataset.

In short, because RMLE gave a similar result of MLE with much more flexibility, and its estimators
behaved asymptotically normal, we suggested using RMLE for LLM to investigate this dataset.

Appendix

library (1me4)

lamb <— read.csv(”lamb.csv”)

cols <— c¢(”Sire”, "Line”, ”Age”)

lamb [ cols] <— lapply(lamb[cols], as.factor)

lamb <— within (lamb, Age <— relevel(Age, ref = 3))

4 MLE
fit .mle <— lmer (Weight ~ Line + Age — 1 4+ (1| Sire), data = lamb, REML = F)
summary ( fit . mle)

# asymptotic covariance
Z <— model. matrix (Im(Weight ~ Sire — 1, data = lamb))
asym.var <— function(obj, Z, REML = T){
V <— sigma(obj)"2 x diag(nrow(Z)) + unlist (VarCorr(obj)) = Z %% t(Z)
V.m <— solve (V)
X <— model. matrix (obj)
S1 <— t(X) %% V.m %% X
if (REML){
P<— V.m — V.m %% X %% solve (t(X) %% V.m %% X) %% t(X) %% V.m
S2 <— 0.5 % matrix(c(sum(diag(P %% Z %% t(Z) %% P %% Z %% t(Z))) ,
rep (sum(diag (P %% P %% Z %% t(Z))), 2),
sum(diag (P %% P))), ncol = 2)
} else{
S2 <— 0.5 * matrix(c(sum(diag(V.m %% Z %% t(Z) %% V.m %% Z %% t(Z))) ,
rep (sum(diag (V.m %% V.m %% Z %% t(Z))), 2),
sum(diag(V.m %% V.m))), ncol = 2)



0, ncol(S1)*2), ncol = 2)
("sigma_a”"2” , 7sigma_e"2”)
(s1, O), cblnd(t(O), S2))

O <— matrix(rep (
colnames (0) <— ¢
S <— rbind (cbind
return(solve(S))
}
asym.var(fit.mle, Z, REML = F)[8:9,8:9]
sqrt (diag (asym.var(fit .mle, Z, REML = F)[8:9,8:9]))

# bootstrap
library (boot)
mySumm <— function (mod) {
c(”sigma_a"2” = unlist (VarCorr(mod)), ”sigma_e 2” = sigma(mod)"2)
}
fit .boot <— bootMer(fit .mle, mySumm, nsim = 100, seed = 2022)
cov(fit.boot$t)
sqrt (diag(cov(fit .boot$t)))

4 RMLE
fit .rmle <— lmer (Weight = Line + Age — 1 + (1]Sire), data = lamb)
summary ( fit .rmle)

# asymptotic covariance
asym.var(fit.rmle, Z)[8:9,8:9]
sqrt (diag (asym.var(fit.rmle, Z)[8:9,8:9]))

# bootstrap

fit .boot2 <— bootMer(fit .rmle, mySumm, nsim = 100, seed = 2022)
cov(fit.boot28t)

sqrt (diag(cov(fit .boot28t)))
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