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1 Linear Mixture Model

In this project, we demonstrate the liner mixture model (LLM) using a dataset of birth weights of
lambs from Harville and Fenech (1985). The observations y consist of birth weight of n = 62 lambs
from 23 rams with the ages of dam and the five distinct population lines together being recorded as
covariates. The age of the dam is a categorical variable with three categories numbered 1 (1-2 years),
2 (2-3 years), and 3 (over 3 years). Let xijk,s = 1 if the age of the kth dam corresponding to line i
and sire j is in category s, and xijk,s = 0 otherwise. Another fixed effects are the line effects, denoted
by µi, i = 1, . . . , 5. In the model, we consider the sire effects as random effects, denoted by αij ’s for

i = 1, . . . , 5, j = 1, . . . , ni, with n1 = n2 = n3 = 4, n4 = 3, and n5 = 8, where αij
iid∼ N(0, σ2

α).
Finally, we denote the error terms as ϵijk’s, i = 1, . . . , 5, j = 1, . . . , ni, and k = 1, . . . , nij , where

ϵijk
iid∼ N(0, σ2

ϵ ), and nij is the number of measures in the (i,j) cell. In the meanwhile, we assume
αij ’s and ϵijk’s are mutually independent.

Under the previous assumptions, we consider the model, yijk = µi+a1xijk,1+a2xijk,2+αij + ϵijk.
In general, we have
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where α ∼ N23(0, σ
2
αI23) and ϵ ∼ N62(0, σ

2
ϵ I62) are mutually independent. Lately, we denote the pa-

rameters of the components of the marginal covariance matrix as θ = (σ2
α, σ

2
ϵ )

t, and the parameter of
interests in this model as ψ = (β, θt)t. In the next section, we presented our analysis of ψ using max-
imum likelihood estimation (MLE) methods and restricted maximum likelihood estimation (RMLE)
methods.

2 Analysis

2.1 Maximum Likelihood Estimation

We implemented the model using package lm4 in R. After doing the analysis of MLE, we estimated the
coefficients β in Table 1. We also obtained the estimates σ̂2

α = 0, and σ̂2
ϵ = 2.971 from our analysis.

To further investigate θ, we presented two fashions to analyze the dispersion of our estimate θ̂.

1. The asymptotic covariance matrix (p. 11 of Jiang 2007);

Let ℓ be the log-likelihood of y. The marginal variance of y in our model is V = σ2
ϵ I62 +

σ2
αZZ

t. By the theorem of MLE, we derived the asymptotic covariance matrix, V ar(θ̂) =
−[(V ar(∂ℓ/∂ψ)−1]8:9,8:9, where
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Table 1: MLE of β

Let V̂ ara(θ̂) be the asymptotic covariance matrix of θ̂. Based on the expression, our implement
showed that

V̂ ara(θ̂) =

[
0.088 −0.088
−0.088 0.372

]
.

The standard errors of σ̂2
α and σ̂2

ϵ from the asymptotic covariance matrix are 0.297 and 0.610,
respectively.

2. The bootstrap method with B = 100 being the number of bootstrap samples.

Let V̂ arb(θ̂) be the bootstrapped covariance matrix of θ̂. For the reproducible purpose, we
predetermined the random seed being seed = 2022. Using the parametric bootstrap method,
we obtained

V̂ arb(θ̂) =

[
0.006 −0.000
−0.000 0.274

]
.

The standard errors of σ̂2
α and σ̂2

ϵ from the bootstrap method are 0.077 and 0.524, respectively.

2.2 Restricted Maximum Likelihood Estimation

Analogously, we conducted our analysis through lm4. The estimates β̃ are indicated in Table 2. We
also obtained the estimates of θ, σ̃2

α = 0.511 and σ̃2
ϵ = 2.995. To complete our investigation of θ̃, we

performed the two methods again with a slight modification.

Table 2: RMLE of β

1. The asymptotic covariance matrix;

With a modification by replacing V −1 in V ar(∂ℓ/∂θ) by P , where

P = V −1 − V −1X(XtV −1X)−1XtV −1,

we obtained

V̂ ara(θ̃) =

[
0.449 −0.183
−0.183 0.456

]
.

The standard errors of σ̃2
α and σ̃2

ϵ from the asymptotic covariance matrix are 0.670 and 0.675,
respectively.
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2. The bootstrap method with B = 100.

Again, for the reproducible purpose, we predetermined the random seed being seed = 2022.
The bootstrapped results suggested

V̂ arb(θ̃) =

[
0.549 −0.036
−0.036 0.345

]
.

The standard errors of σ̃2
α and σ̃2

ϵ from the bootstrap method are 0.741 and 0.587, respectively.

3 Discussion

We found out that the estimates of β and σ2
ϵ are pretty similar no matter we used MLE or RMLE.

However, the estimate of σ2
α is significantly different. The results from MLE suggested that α should

degenerate to a point mass rather than be normally distributed. This meant there is no random effect
from the sire effect to the weight of lambs. By contrast, the results from RMLE allowed the presence
of the random effects in the model.

Another departure in our analyzes is their asymptotic behavior. The bootstrapped covariance
matrix in MLE did not seem to converge to the asymptotic covariance matrix in MLE, whereas the
bootstrapped covariance matrix in RMLE was closed to the asymptotic covariance matrix in RMLE.
In fact, the RMLE remained consistent and asymptotically normal, while the MLE may fail to be
consistent or asymptotically normal (Jiang, 1996). The huge difference between the standard errors

of σ2
α from asymptotic covariance matrix and the bootstrapped method suggested that θ̂ failed to be

asymptotically normally distributed in the weight of lambs dataset.
In short, because RMLE gave a similar result of MLE with much more flexibility, and its estimators

behaved asymptotically normal, we suggested using RMLE for LLM to investigate this dataset.

Appendix

l ibrary ( lme4 )
lamb <− read . csv ( ”lamb . csv ” )
c o l s <− c ( ” S i r e ” , ”Line ” , ”Age” )
lamb [ c o l s ] <− lapply ( lamb [ c o l s ] , as . factor )
lamb <− with in ( lamb , Age <− relevel (Age , r e f = 3) )

# MLE
f i t . mle <− lmer (Weight ˜ Line + Age − 1 + ( 1 | S i r e ) , data = lamb , REML = F)
summary( f i t . mle )

# asymptot ic covar iance
Z <− model .matrix (lm(Weight ˜ S i r e − 1 , data = lamb ) )
asym . var <− function ( obj , Z , REML = T){

V <− sigma ( obj )ˆ2 ∗ diag (nrow(Z ) ) + unlist ( VarCorr ( obj ) ) ∗ Z %∗% t (Z)
V.m<− solve (V)
X <− model .matrix ( obj )
S1 <− t (X) %∗% V.m %∗% X
i f (REML){
P <− V.m − V.m %∗% X %∗% solve ( t (X) %∗% V.m %∗% X) %∗% t (X) %∗% V.m
S2 <− 0 .5 ∗ matrix (c (sum(diag (P %∗% Z %∗% t (Z) %∗% P %∗% Z %∗% t (Z ) ) ) ,

rep (sum(diag (P %∗% P %∗% Z %∗% t (Z ) ) ) , 2 ) ,
sum(diag (P %∗% P) ) ) , ncol = 2)

} else {
S2 <− 0 .5 ∗ matrix (c (sum(diag (V.m %∗% Z %∗% t (Z) %∗% V.m %∗% Z %∗% t (Z ) ) ) ,

rep (sum(diag (V.m %∗% V.m %∗% Z %∗% t (Z ) ) ) , 2 ) ,
sum(diag (V.m %∗% V.m) ) ) , ncol = 2)

}
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O <− matrix ( rep (0 , ncol ( S1 )∗2) , ncol = 2)
colnames (O) <− c ( ” sigma aˆ2” , ” sigma eˆ2” )
S <− rbind (cbind ( S1 , O) , cbind ( t (O) , S2 ) )
return ( solve (S ) )

}
asym . var ( f i t . mle , Z , REML = F) [ 8 : 9 , 8 : 9 ]
sqrt (diag ( asym . var ( f i t . mle , Z , REML = F) [ 8 : 9 , 8 : 9 ] ) )

# boo t s t r ap
l ibrary ( boot )
mySumm <− function (mod) {

c ( ” sigma aˆ2” = unlist ( VarCorr (mod) ) , ” sigma eˆ2” = sigma (mod)ˆ2)
}
f i t . boot <− bootMer ( f i t . mle , mySumm, nsim = 100 , seed = 2022)
cov ( f i t . boot$t )
sqrt (diag (cov ( f i t . boot$t ) ) )

# RMLE
f i t . rmle <− lmer (Weight ˜ Line + Age − 1 + ( 1 | S i r e ) , data = lamb )
summary( f i t . rmle )

# asymptot ic covar iance
asym . var ( f i t . rmle , Z ) [ 8 : 9 , 8 : 9 ]
sqrt (diag ( asym . var ( f i t . rmle , Z ) [ 8 : 9 , 8 : 9 ] ) )

# boo t s t r ap
f i t . boot2 <− bootMer ( f i t . rmle , mySumm, nsim = 100 , seed = 2022)
cov ( f i t . boot2$t )
sqrt (diag (cov ( f i t . boot2$t ) ) )
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