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In this project we review a study on nonlinear state space modeling employing bayesian approach
through the Gibbs sampler technique. Nonlinear state space models provide a versatile framework
for capturing complex dynamic systems, and the Gibbs sampler serves as a powerful tool for inference
in such contexts. This project explores the application of the Gibbs sampler in estimating latent
states and parameters in nonlinear state space models with an emphasis on noisy logistic maps. The
study delves into the methodology, emphasizing the algorithm’s capability to handle nonlinearity and
uncertainties in the system. The findings contribute to the advancement of nonlinear state space
modeling methodologies and investigate the practical utility of the Gibbs sampler in addressing
challenges posed by complex, dynamic systems near chaos.

I. INTRODUCTION

State-space modeling is a powerful technique
extensively employed in the analysis and repre-
sentation of dynamic systems, providing a sys-
tematic framework to describe their behavior
over time. When applied to nonlinear systems,
the traditional linear state-space representation
is extended to accommodate the intricacies of
nonlinear dynamics. In state-space modeling of
nonlinear systems, variables evolve over time,
and their interactions are captured through non-
linear equations. This approach enables the en-
capsulation of complex system behaviors that
may not be accurately represented by linear
models.

By employing nonlinear state-space modeling,
one might can investigate the dynamics of sys-
tems exhibiting nonlinearity, allowing for more
accurate predictions and facilitating the design
of control strategies tailored to handle the inher-
ent complexities of such systems, specially when
we are dealing with hidden non-linear systems
where we have have noisy measurements of an
non-linear stochastic system.

II. NON-LINEAR SYSTEMS

Even simple nonlinear systems can display ex-
tremely complex dynamics, as pointed out by
May in his influential work [1]. To demonstrate
this rich complexity, we use the logistic map as

FIG. 1. Logistic Map

an illustrative example:

xn+1 = rxn(1− xn) (1)

Here, the xn may denote a dimensionless metric
for the population in the nth generation, while r
can signify the intrinsic growth rate. The plot of
a logistic map, represented by Eq. 1, takes the
shape of a parabola, reaching its maximum value
of r

4 when x is equal to 1
2 . To preserve meaning-

ful dynamics, it is assumed that the parameter
r is constrained within the range of 0 ≤ r ≤ 4,
ensuring that Eq. 1 maps the interval 0 ≤ x ≤ 1
onto itself.

A. Period-Doubling

Suppose we set a constant value for r, select
an initial population x0, and subsequently em-
ploy Eq. 1 to generate the successive values
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FIG. 2. Bifurcation Diagram for Logistic Map as
control parameter varies.

FIG. 3. Bifurcation Table for Logistic Map [2]

of xn. When r is significantly small (r ≪ 1),
the population becomes extinct, converging to
xn → 0 as n → ∞. In the range 1 < r < 3, the
population undergoes growth and eventually at-
tains a non-zero steady state.

We can visualize these final values by plotting
them after eliminating transient initial states.
The corresponding outcomes are depicted in
Fig.2 (codes are included in the appendix)

With higher values of r, the population un-
dergoes oscillations around the previous stable
state, fluctuating between a large population in
one generation and a smaller population in the
next. This oscillation pattern, characterized by
an alternation between two states, is referred to
as period doubling. Upon further increasing r,
the system exhibits oscillations between an in-
creasing number of states, such as 4, 8, 16, . . ..

Bifurcations occur more rapidly with an in-
crease in the value of r. Eventually, the se-
quence of control parameters rn converges to a
limiting value denoted as r∞. This convergence
follows a geometric pattern: as n becomes very

large, the spacing between successive transitions
diminishes by a constant factor.

When r reaches r∞, the map enters a chaotic
regime, and the set of stable points transforms
from a finite set to an infinite set. Beyond r∞,
the system displays a surprising blend of or-
der and chaos, featuring periodic windows amid
chaotic regimes..

B. Lyapunov Exponent

In order for a system to be characterized as
”chaotic,” it must display increased sensitivity
to initial conditions, with neighboring trajecto-
ries diverging exponentially quickly. Assuming
an initial condition x0, consider a nearby point
x0 + δ0. Let δn represent the separation after n
iterations. If δn is approximately equal to δ0e

nλ,
then λ is referred to as the Lyapunov exponent.
A positive Lyapunov exponent serves as the hall-
mark of chaotic behavior.

It can be seen that δn = fn (x0 + δ0)−fn (x0)
so

λ ≈ 1

n
ln

∣∣∣∣δnδ0
∣∣∣∣

=
1

n
ln

∣∣∣∣fn (x0 + δ0)− fn (x0)

δ0

∣∣∣∣
=

1

n
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∣∣(fn)
′
(x0)

∣∣
The expression within the logarithm can be ex-
panded using the chain rule:

(fn)
′
(x0) =

n−1∏
i=0

f ′ (xi) .

Hence

λ ≈ 1

n
ln

∣∣∣∣∣
n−1∏
i=0

f ′ (xi)

∣∣∣∣∣
=

1

n

n−1∑
i=0

ln |f ′ (xi)| .

If this expression converges to a limit as n → ∞,
we designate that limit as the Lyapunov expo-
nent for the orbit originating from x0:

λ = lim
n→∞

{
1

n

n−1∑
i=0

ln |f ′ (xi)|

}
.
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FIG. 4. Lyapunov Exponents for the Logistic Map

For stable fixed points and cycles, the Lya-
punov exponent (λ) is negative, while for chaotic
attractors, λ is positive. The outcomes of sim-
ulations, illustrating the calculation of the Lya-
punov Exponent for the logistic map, are pre-
sented in Fig. 4, codes are included in the at-
tachment.

C. Renormalization

In this section, I provide an intuitive introduc-
tion to the renormalization theory for period-
doubling and offer insights into the mathemat-
ical derivation of r∞, representing the onset of
chaos. This section serves primarily as a review
of the reference [2].

The study in [3] has shown that all unimodal
maps share comparable bifurcation diagrams,
depicted in FIG. 2. In essence, they each expe-
rience period-doubling routes leading to chaos,
succeeded by periodic windows intertwined with
chaotic bands.

Let f(x, r) represent a unimodal map that un-
dergoes a period-doubling route to chaos as r in-
creases. Suppose xm is the maximum of f . Let
rn denote the value of r at which a 2n-cycle is
initiated, and let Rn denote the value of r at
which the 2n-cycle becomes superstable (a su-
perstable n-cycle is characterized by fn(x) = x
and d

dxf
n(x) = 0).

Indeed, the convergence rate remains consis-
tent across different unimodal maps, as depicted

FIG. 5. Schematic Representation of Bifurcation of
Unimocal Maps [2]

FIG. 6. Schematic representation of self-similarity
between f and f2 [2]

in FIG.5:

δ = lim
n→∞

rn − rn+1

rn+1 − rn
=

∆n

∆n+1
= 4.669 · · · (2)

α = lim
n→∞

dn
dn+1

= −2.5029 · · · (3)

This phenomenon can be further elucidated
through the perspective of renormalization and
self-similarity in the context of chaotic maps
[4, 5]. The renormalization theory draws inspi-
ration from the self-similarity observed in the
bifurcation diagram, akin to the patterns found
in the branching of fig trees.

To illustrate self-similarity, envisioning f and
f2 involves normalizing f2 and then mapping it
back into f (see FIG. 6). Here, R0 and R1 repre-
sent superstable cycles of f and f2, respectively.
To transition from one to the other, a change of
scale and a reversal of both axes are necessary.
This transformation can be represented as:
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FIG. 7. Renormalizaioton between f and f2 [2]

f(x,R0) ≈ αf2(
x

α
,R1) (4)

In summary, the renormalization of f involves
taking its second iterate, rescaling x → x

α , and
shifting r to the next superstable value. This
process can be generalized for n iterations:

f(x,R0) ≈ αnf2n(
x

αn
, Rn) (5)

In this expression, the limit is denoted as g0(x),
which is a universal function independent of the
specific form of the mapping f . Generally, uni-
versal functions can be conceptualized as:

gi(x) = lim
n→∞

αnf2n(
x

αn
, Rn+i) (6)

In the state of chaos, when Ri = R∞, there is
no need for a shift during renormalization. This
yields the following relation:

g∞(x) = g(x) = αg2(x/α) (7)

This forms a self-referential functional equa-
tion for g(x) and the universal scale factor α. By
examining the boundary conditions for g(x), one
can solve this equation and obtain α ≈ 2.5029,
a value consistent with the numerical results ob-
tained from simulations.

D. Problem Setup

In the following sections, we investigate a
Bayesian approach that can be employed to an-
alyze a hidden noisy logistic map [6]. We make
the following assumptions:

xn+1 = rxn(1− xn) + un (8)

yn = bx2
n + vn (9)

In these equations, the first one characterizes
the concealed dynamics of the system, incor-
porating a logistic map along with white noise.
The second equation describes the noisy obser-
vations of the system, with a known constant
b. A Bayesian approach is particular helpful
in this problem because it models the unknown
state distribution by a prior and links it to the
observation by updating through a posterior.
The procedure mimics the nature of state-space
model and allows us to do inference from the
sample of unknown state we generate.

Our goal is to assess our ability to estimate r̂
(a marginal distribution for the actual value of
r), predict one step ahead of the system given
a sequence of observations (i.e., p(xn+1|y⃗)), and
also filter through the observations on the next
observable (i.e., p(xn+1|y⃗, yn+1)). The explo-
ration of whether the Gibbs sampler encounters
success or failure is significant, particularly in
regimes proximate to chaos, where internal dy-
namics exhibit substantial divergence.

III. STATE SPACE MODELS

The difference between a typical time series
and a state space model, is that in a state space
model, we have unknown states xt, which are
associated with our observed values yt. We
will start this section discussing Linear State
Space models, and a filtering technique called
the Kalman Filter, which can be used to es-
timate states in this the linear case. Then,
we discuss a specific example of applying the
Kalman Filter before introducing Non-Linear
State Spaces.

A. Linear Vs. Non-Linear State Space
Models

We start by considering the standard linear
state space model given by Equation 10. Here,
Ht and Ft represent known matrices of con-
stants. The simplest case for this is when Ht =
H and Ft = F , in which case, we have a univari-
ate linear model. In practice, these matrices, as
well, must be estimated. The Technique we will
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discuss for estimating the states xt as well as
forecasting future yt is called Kalman Filtering.

yt = Htxt + ϵt, ϵt ∼ N(0,Σ2
ϵ)

xn+1 = Ftxt + ηt, ηt ∼ N(0,Σ2
η)

(10)

In contrast to the linear state-space model, we
also can have a non-linear state space, as seen
in equation 11, where ht(∗) and ft(∗) can de-
pend on unknown parameters, but are assumed
to have a known structure. The basic Kalman
Filter cannot be used in this setting, although, if
we still have the normal error assumption, there
are slight modifications to the Kalman Filter
called the Extended Kalman Filter as well as the
Unscented Kalman filter. We will not discuss
these algorithms in this paper, as the focus is
on understanding the Gibbs sampler, which can
be used in a much more general setting, without
even the normal error assumption.

yt = ht(xt) + ϵt,

xt+1 = ft(xt) + ηt
(11)

B. Kalman Filter

The Kalman Filter is a method we use to up-
date assumptions of a system’s state, after new
data is observed. Similar to a Hidden Markov
Model (HMM), we have a system of unknown
states we are trying to estimate, and we want
to forecast a probability distribution of future
observations. While HMM’s operate in the dis-
crete setting, updating estimates of the proba-
bility distribution of two coins, a Kalman Filter
continuously refines state estimates, as time is
considered a continuous variable.

FIG. 8. Hidden Markov Model

A basic Kalman Filter can be applied to es-
timate the state of a system, and forecast fu-
ture values in the context of a linear system
with Gaussian noise. The Kalman Filter can
be implemented as shown in equation 13, where
Kt = Pt

Ft
and a1, P1 are assumed to be known.

We must make some assumptions as to the
structure of our system. Namely, the assump-
tions:

(Yt−1|xt+1) ∼ N(at+1, Pt+1)

(xt|Yt−1) ∼ N(at, Pt)

(xt|Yt) ∼ N(at|t, Pt|t)

(12)

Let us explain the assumptions more intu-
itively. First, we assume some (normal) con-
ditional distribution of Yt−1|xt+1, where Yt−1

is the vector of all our previous observations.
Thus, at+1 represents the one-step-ahead pre-
dictor of xt+1, and Pt+1 it’s associated variance
(our goal is to find both of these quantities).
The previous assumption represented our Fu-
ture state estimate based on current observa-
tions, and xt|Yt−1 is our current state estimate
given past observations. Lastly, we assume xt|Yt

—which represents our Updated state estimate,
which utilizes our newest observation yt— fol-
lows a normal distribution as well. Thus, at|t is
referred to as the filtered estimator of the state
xt and Pt|t it’s associated variance.

Given these assumptions of conditional linear-
ity and normality, we can determine the proper-
ties given in equation 14.

vt = yt − at,

at|t = at +Ktvt,

at+1 = at +Ktvt,

Ft = Pt + σ2
ϵ ,

Pt|t = Pt(1−Kt),

Pt+1 = Pt(1−Kt) + σ2
η.

(13)

This updating scheme has many components,
so I will break it down to make more sense as
follows:

We start with some a1 and P1 which is sim-
ply assumed, but may be arbitrary. We define a
variable vt which represents the one-step ahead
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prediction error of yt and Ft it’s associated vari-
ance. Kt represents the ”Kalman Gain”, or the
relative uncertainty between the current esti-
mate and the new observation at a time t. As
Kt becomes smaller, this indicates there is less
information to gain via collecting a new obser-
vation. We update from a1 to a2 by adding our
one-step-ahead prediction error times the initial
Kalman Gain (which simply measures the pro-
portion of variance of our one step-ahead predic-
tor to this variance plus the inherent variance of
the y′ts) to a1. P1 is updated to P2 via multipli-
cation by the complement of the Kalman Gain
and the one-step ahead prediction variance, plus
the variance of the x′

ts

E(vt|Yt−1) = E(xt + ϵt − at|Yt−1) = at − at = 0,

Var(vt|Yt−1) = Var(xt + ϵt − at|Yt−1) = Pt + σ2
ϵ ,

E(vt|xt, Yt−1) = E(xt + ϵt − at|xt, Yt−1) = xt − at,

Var(vt|xt, Yt−1) = Var(xt + ϵt − at|xt, Yt−1) = σ2
ϵ .

(14)

1. Nile River Example

(This example was found in [7]) In the follow-
ing example, we apply the Kalman Filter to data
using observations from the Nile River annual
flow Volume. Here, our hidden states are physi-
cal processes which affect the river flow, but are
not directly observed. The existence of such fea-
tures can be inferred by the fact that this is a
physical system, and so linearity and normality
assumptions are likely to hold reasonably well.
In Figure 9, we see four graphs which describe
the Nile River Data, and how well we can per-
form estimation and prediction using a Kalman
Filter. In graph (i), we see the data: On the x
axis is the year, and on the y axis we see the
annual flow volume of the Nile River. We ap-
ply the iterative procedure discussed in this sec-
tion, where a1 = 0, P1 = 107, σ2

ϵ = 15099, σ2
η =

1469.1 with a1 and P1 were chosen arbitrarily.
Going through the first few points we would see:

y = [1120, 1160, 963, ..., 718, 714, 740]

v1 = y1 − a1 = 1120− 0 = 1120

F1 = P1 + σ2
ϵ = 107 + 15099

K1 = P1/F1 = 0.9985

a2 = a1 +K1v1 = 0 + 0.9985 ∗ 1120 = 1118.3

P2 = P1(0.0015) + 1469.1 = 16469.1,

...
(15)

And we would end up finding a =
[1118, 1140, ..., 820, 798] These points are all
shown in (i), as well as their 90% Confidence
intervals, which helps us get more of a smooth,
more accurate representation of the underlying
state of the system across time. (ii) shows our
P ′
ts, which clearly, very rapidly converge to a

constant value, and (iv), which shows our pre-
diction variances F ′

ts, a similar statement can be
seen. (iii) simply shows the error in our predic-
tions, which are generally less than about 250 in
absolute value. As we can see, the Kalman Fil-
ter provides a smooth function which extracts
much of the meaningful information hidden in
our data.

FIG. 9. Nile River Data with Kalman Filter Applied

IV. GIBBS SAMPLER

A. Monte Carlo Simulation

Before we talk about the Gibbs sampler, it is
very important to understand what Monte carlo
Simulation is, and how Monte Carlo methods
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are used to solve problems for which traditional
numeric techniques cannot be used. So in this
section, we will introduce a brief overview of
Monte Carlo Simulation.
Monte Carlo Simulation, as the name may im-

ply, is a technique in which we use randomiza-
tion to simulate data from a probability distri-
bution many times to find many types of nu-
meric results. This can be best understood with
a simple example with the game of blackjack.
We are interested in answering the question of
whether or not a player can make money playing
blackjack, which we will measure with metrics
such as expected value, variance, and risk of ruin
(AKA, losing all your money at some point over
the course of play). Figure 10 demonstrates the
results of a particular implementation of Monte
Carlo simulation in which the user defines a par-
ticular playing and betting strategy which will
be strictly adhered to, as well as a particular set
of game rules. One billion random hands are
simulated with these parameters, and we can
see the following results for a player perfectly
following a this strategy:

• Starting Bankroll = $20,000

• 100 Rounds are dealt per hour

• Expected profit = $140 per hour,

• Variance = $1153.34 per hour,

• Risk of Ruin = 1.5%

1. BlackJack Simulation

FIG. 10. BlackJack Monte Carlo Simulation

This problem would be very difficult to solve
outright with probability theory, and a closed-
form analytical solution is impossible, so Monte
Carlo techniques are employed. This technique
is very important to this paper, as the Gibbs
sampler is actually an adaptive Monte Carlo in-
tegration technique. Very importantly, Monte
Carlo Methods do not require any assumption
about the state of the system being modeled,
which is very important to solving non-linear
state space problems.

B. Gibbs Sampler

The Gibbs sampler is a Markov Chain Monte
Carlo (MCMC) algorithm used for statistical in-
ference and Bayesian sampling. The primary
purpose of the Gibbs sampler is to approximate
the joint distribution of multiple random vari-
ables by iteratively sampling from their con-
ditional distributions. In principle, if we gen-
erate a large sample and update the sampling
equations many times, the sampler should have
the same law to the underlying true state-space
model. Therefore, we could do forecasting and
filtering from the sample we generate.

Here’s a basic overview of how the Gibbs sam-
pler works:

1. Setup: Consider a set of random variables,
U = (U1, . . . , Uk), for which you want to
sample from the joint distribution P (U).

2. Initialization: Start with an initial set of
values for each variable in U . This serves
as the starting point for the algorithm.

3. Iteration: For each iteration, select one
variable from U and update its value by
sampling from its conditional distribution
given the current values of the other vari-
ables. Repeat this process for each vari-
able in U .

4. Convergence: After a sufficient number
of iterations, the sampler reaches a point
where the samples drawn closely approx-
imate the joint distribution of the vari-
ables.
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5. Repeat: Steps 3 and 4 are repeated un-
til the algorithm converges to the desired
precision or a predetermined number of it-
erations.

In particular, the variables U in our case are
nuisance parameters and state {xn}Nn=1.

The key idea behind the Gibbs sampler is
that, at each iteration, it updates one variable
while keeping the others fixed. This conditional
sampling allows the algorithm to explore the
joint distribution of the variables in a way that
converges to the true distribution.

The Gibbs sampler is particularly useful in
Bayesian statistics when dealing with complex
posterior distributions. It simplifies the sam-
pling process by breaking it down into more
manageable steps, as each variable is updated
based on the values of the others. This ap-
proach is especially beneficial when direct sam-
pling from the joint distribution is challenging.
In our case, Gibbs sampler helps us obtain the
joint distribution from a nonlinear state-space
model.

While the Gibbs sampler is a powerful tool,
it’s important to note that its performance can
be influenced by factors such as the choice of
conditional distributions and the initialization
of the algorithm. In particular, to obtain an an-
alytic form of posterior distributions for Gibbs
sampler to work, the prior distributions are cho-
sen to be normal distributions if the marginal
distribution is modeled by a normal or an in-
verse gamma distribution if that is modeled by
a non-normal distribution. Both prior distribu-
tions with their parameters are wish to be cho-
sen in the way that the corresponding mean is
as close as possible to the true value for a fast
convergence and stable numerical result. We
will see a concrete example to choose a prior
for Gibbs sampler in the next section.

V. SIMULATION & EXAMPLES

A. A Non-linear and Non-normal Example

Consider a non-linear and non-normal exam-
ple from [6]. For n = 1, . . . , 100,

xn = αxn−1 + β
xn−1

1 + x2
n−1

+ γ cos(1.2(n− 1)) + un

(16)

yn = x2
n/20 + vn, (17)

where α = 0.5, β = 25, γ = 8, x0 = 0 are given
but unknown to the analyzer. The distributions
of un ∼ tv and vn ∼ N(0, 1) and v = 10 are
also given and known to the analyzer. The visu-
alization of a simulated data and its prediction
is shown in Figure 11. The posterior distribu-
tion of the nuisance parameters obtained from
Gibbs sampler are shown in Figure 12. Both the
prediction and peak of their distribution is very
close to the true values, suggesting the practical
benefit of Gibbs sampler to a non-linear state-
space model. A complete simulation detail could
be found in [6].

The only thing left here is how to handle non-
normal errors in Equation 16. According to the
paper[6], they modeled a non-normal error by
a mixture of normal distributions. To be more
specific, they assumed there exists a latent vari-
able λn such that the conditional distribution of
xn given λn is normal, i.e.,

p(xn|xn−1, σ
2) =

∫
Λ

p(xn|xn−1, λn, σ
2)p(λn)dλn,

where xn|xn−1, λn, σ
2 ∼ N(f(xn−1), λnσ

2) with
f(·) being a known state-space function of xn.
The prior distribution p(λn) again is chosen
from inverse gamma distributions to obtain
an analytic form of posterior distributions for
Gibbs sampler to work. The intuition to model
non-normal distribution by the mixture of nor-
mal is to approximate the underlying distribu-
tion by multiple normal distributions with the
common mean centered around the state-space
model, yet each contributing to the overall ob-
served distribution with its own standard de-
viation

√
λnσ, and weight p(λn). Obvious, if

xn itself was normally distributed, one just set
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λn = 1 with probability one to cover the normal
error case.

FIG. 11. Simulated state-space model and its pre-
diction

FIG. 12. Posterior distribution of nuisance parame-
ters

B. Revisit Logistic Map

In this section, we consider the hidden noisy
logistic map given in Equation 8 for n =
1, . . . , 25, where r = 0.5, 1, 5, 3, 3.8, x0 = 0.5,
b = 20, un ∼ N(0, σ2) with σ = 0.003, and
vn ∼ N(0, τ2) with τ = 0.1 are all known to
the analyzer. The different choose of r allows us
to observe different dynamic behaviors of the lo-
gistic map. The visualization of simulated data
and its prediction are shown in Figure 13 and 14
for r = 0.5, Figure 15 and 16 for r = 1.5, Figure
17 and 18 for r = 3, and Figure 19 and 20 for
r = 3.8. For xn without noise, we know that if
0 < r < 1, xn → 0, leading to the extinction; if
1 < r < 3, xn → (r − 1)/r; if 3 < r < 3.57, xn

behaves oscillation; if 3.57 < r < 4, xn becomes
chaos. In our simulation, we found that Gibbs
sampler works for the first three cases, but seems
to fail when r lies in the range of chaos. This
suggests that the system of the hidden logistic
map is sensitive to the value of r. In particular,
we also try to make r unknown to the analyzer,
but our numerical experiment found that it is
very likely to sample r across different phases
and thus make its numerical result unstable to
converge to a reasonable value. To sum up, if a r
goes from 0 to 3.83, the prediction of Gibbs sam-
pler will become more and more sensitive to the
previous prediction due to the nature of logistic
map, thus making the prediction unreliable.

FIG. 13. State for r = 0.5



10

FIG. 14. Observation for r = 0.5

FIG. 15. State for r = 1.5

FIG. 16. Observation for r = 1.5

FIG. 17. State for r = 3

FIG. 18. Observation for r = 3

FIG. 19. State for r = 3.8
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FIG. 20. Observation for r = 3.8

VI. CONCLUSION

The logistic map exhibits diverse dynamic be-
haviors determined by the parameter r. Gibbs
sampler is a valuable tool for non-linear and
non-normal state space models, especially when
Kalman Filtering, a linear model, proves inad-
equate. However, Gibbs sampler requires in-
tensive computation and knowledge of the func-
tional forms of hn(x) and fn(x) in a state-space
model, as well as the distributions of noise. The
second problem may be partially alleviated by
employing Baum-Welch algorithm from hidden
Markov models as a nonparametric approach to
obtain an initial fit and guess the form of hn(x)
and fn(x). Careful prior selection is also crucial,
and the method may be potentially inefficient in
sampling. Furthermore, sampling r in the logis-
tic map can be challenging due to its dynamic
phases.
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VII. APPENDIX

Codes used for generating logistic map plots
can be found here: https://github.com/
AliakbarMehdizadeh/STA-237-Project
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